Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improved Sampling in Ab Initio-Based Free Energy Calculations of Amino Acids at Solid-Liquid Interfaces: A Tight-Binding Assessment on TiO2 Anatase (101)
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Atomistic simulations are powerful for probing molecules at bioinorganic interfaces and excellent complements to scarcely available experimental techniques. The free energy controls the adsorption behavior of molecules on nanosurfaces, and is therefore a quantity of particular importance. Advanced sampling techniques can efficiently explore the adsorption free energy landscape, but molecular simulations with classical (Newtownian) dynamics fail to capture charge transfer and polarization at the solid-liquid interface. First principle simulations do not suffer from this limitation but come with a heavy computational load. Here, we introduce an efficient protocol to explore the free energy of adsorption in the ab initio framework. This approach accurately models the complex phenomena at bio-inorganic surfaces on the nanoscale and properly samples the relevant thermodynamic properties. We present a case study of adsorption of the Lysine and Aspartate amino acids on the anatase (101) TiO2 surface with the tight binding method. The high values of the calculated adsorption free energies highlight the importance of a proper description of the electronic state for surface binding processes.

HSV kategori
Forskningsprogram
fysikalisk kemi
Identifikatorer
URN: urn:nbn:se:su:diva-169794OAI: oai:DiVA.org:su-169794DiVA, id: diva2:1325942
Tilgjengelig fra: 2019-06-17 Laget: 2019-06-17 Sist oppdatert: 2019-06-19bibliografisk kontrollert
Inngår i avhandling
1. Atomistic simulations of structural and dynamical properties of liquids under geometric constraints
Åpne denne publikasjonen i ny fane eller vindu >>Atomistic simulations of structural and dynamical properties of liquids under geometric constraints
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The statistical-mechanical description of liquids represents a formidable problem in physic due to the absence of the analytical theory of the liquid state. Atomistic simulations represent a unique source of information in this respect and can be implemented in order address macroscopically measurable liquid properties, including its structure and dynamics, based on the information of the interactions between its constituent molecules. A particularly intriguing challenge is represented by the problem of studying liquids under geometric constraints like surfaces, or where the dimensionality is strongly suppressed like for liquids in 2 dimensions. Experimental measurements cannot access to these regions due to the resolution limitations. In this thesis the study of confined liquids is achieved by particle-based simulations at different level of theory. In particular 3 study cases are considered: the first is the characterization of solid-liquid interfaces. The problem of adsorbing surfaces is treated as a specific case of inorganic surfaces in contact with liquid water. TiO2, chosen as reference material, is studied in its polymorphic structures in aqueous conditions. The surface reactivity and its influence on the liquid structure is solved considering the quantum nature of the system. The mechanism of a solute adsorbing at the interface, considering the interfacial liquid properties, is also addressed. New advanced analysis tools for determining the structural and dynamical properties of water under a surface confinement and the thermodynamic associated to relative adsorption processes are developed. We are confident that this study will represent a mile stone for a systematic study of complex environments as bio-inorganic interfaces. As second case a liquid confined in a 2D surface is studied. Simple liquids having spherically symmetric interaction are very powerful in order to understand the relevant degrees of freedom that governs a certain physical process. Here we expand the definition of 2D hexatic phases to smectic systems in 3D. Finally the self-assembly of a triply periodic mesophase having a Fddd space symmetry group is fully characterized for a simple liquid. This phase can be thought as a geometrical reduction to a two-dimensional separation surface. The possibility of generating such complex network with simple particles, like in colloids, opens the frontiers for the exploration of new materials and applications.

sted, utgiver, år, opplag, sider
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University, 2019. s. 60
Emneord
liquid, contraint, TiO2, surfaces, bio-inorganic, molecular dynamic, ab-initio, tight-binding, DFT, metadynamic, free energy, nanoparticles, water, amino acids, adsorption, mesophases, hexatic, smectic, triply periodic network, Fddd
HSV kategori
Forskningsprogram
fysikalisk kemi
Identifikatorer
urn:nbn:se:su:diva-169817 (URN)978-91-7797-757-5 (ISBN)978-91-7797-758-2 (ISBN)
Disputas
2019-09-05, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 14:00 (engelsk)
Opponent
Veileder
Merknad

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 6: Manuscript. Paper 7: Manuscript.

Tilgjengelig fra: 2019-08-13 Laget: 2019-06-17 Sist oppdatert: 2019-08-12bibliografisk kontrollert

Open Access i DiVA

fulltext(5336 kB)24 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5336 kBChecksum SHA-512
dc0ce3441fd4f9894afc32922e9ee5fded391c0d71368a15b66315831e6c27be2208d517bfc6d10103d29cc6d01aba8037c86ab757769e1283440c2593aa089a
Type fulltextMimetype application/pdf

Andre lenker

ChemRxiv

Søk i DiVA

Av forfatter/redaktør
Agosta, LorenzoBrandt, Erik G.Lyubartsev, Alexander P.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 24 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 957 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf