Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
At thermoneutrality, acute thyroxine-induced thermogenesis and pyrexia are independent of UCP1
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylär biovetenskap, Wenner-Grens institut.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylär biovetenskap, Wenner-Grens institut.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylär biovetenskap, Wenner-Grens institut.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylär biovetenskap, Wenner-Grens institut.ORCID-id: 0000-0003-2070-1587
Rekke forfattare: 42019 (engelsk)Inngår i: Molecular Metabolism, ISSN 2212-8778, Vol. 25, s. 20-34Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Objective: Hyperthyroidism is associated with increased metabolism (thyroid thermogenesis) and elevated body temperature, often referred to as hyperthermia. Uncoupling protein-1 (UCP1) is the protein responsible for nonshivering thermogenesis in brown adipose tissue. We here examine whether UCP1 is essential for thyroid thermogenesis. Methods: We investigated the significance of UCP1 for thyroid thermogenesis by using UCP1-ablated (UCP1 KO) mice. To avoid confounding factors from cold-induced thermogenesis and to approach human conditions, the experiments were conducted at thermoneutrality, and to resemble conditions of endogenous release, thyroid hormone (thyroxine, T4) was injected peripherally. Results: Both short-term and chronic thyroxine treatment led to a marked increase in metabolism that was largely UCP1-independent. Chronic thyroxine treatment led to a 1-2 degrees C increase in body temperature. This increase was also UCP1 -independent and was maintained even at lower ambient temperatures. Thus, it was pyrexia, i.e. a defended increase in body temperature, not hyperthermia. In wildtype mice, chronic thyroxine treatment induced a large relative increase in the total amounts of UCP1 in the brown adipose tissue (practically no UCP1 in brite/beige adipose tissue), corresponding to an enhanced thermogenic response to norepinephrine injection. The increased UCP1 amount had minimal effects on thyroxine-induced thermogenesis and pyrexia. Conclusions: These results establish that thyroid thermogenesis is a UCP1 -independent process. The fact that the increased metabolism coincides with elevated body temperature and thus with accelerated kinetics accentuates the unsolved issue of the molecular background for thyroid thermogenesis. 

sted, utgiver, år, opplag, sider
2019. Vol. 25, s. 20-34
Emneord [en]
Thyroid hormone, Thermogenesis, UCP1, Hyperthermia, Pyrexia, Fever, Brown adipose tissue
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-170828DOI: 10.1016/j.molmet.2019.05.005ISI: 000472215300003PubMedID: 31151797OAI: oai:DiVA.org:su-170828DiVA, id: diva2:1339376
Tilgjengelig fra: 2019-07-29 Laget: 2019-07-29 Sist oppdatert: 2023-01-23bibliografisk kontrollert
Inngår i avhandling
1. Dietary, Pharmacological and Environmental Effects on Brown Adipose Tissue
Åpne denne publikasjonen i ny fane eller vindu >>Dietary, Pharmacological and Environmental Effects on Brown Adipose Tissue
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Obesity is a common health issue; over 12 % of the adult world population have obesity. Obesity has many co-morbidities including cardo-vascular diseases and diabetes. Obesity is the result of chronic positive energy balance, eating too much and expending too little. There are several drugs on the market for treating obesity, but they have limited efficiency and have thus far been unable to halt the current obesity epidemic. All current obesity drugs function by reducing food intake, which is only one half of the energy balance equation, the other being energy expenditure.

The measurement of heat exchange, calorimetry, has a long history, stretching back to the late 18th century. Today most calorimetry on animals uses an indirect method, measuring oxygen consumption and carbon dioxide production. These machines are generally termed respirometers or indirect calorimeters. Already in the late 19th century, it was shown that direct and indirect calorimetry have very close agreement. In animal metabolism carbohydrates, fat and protein, together with oxygen, go through many enzymatic processes, finally resulting in mainly carbon dioxide, water, urea and adenosine triphosphate (ATP). Brown adipose tissue (BAT) can uncouple this process from the final step, ATP production, using the mitochondrial protein uncoupling protein 1 (UCP1), yielding heat.

BAT is a heat-producing organ in many mammals, including humans. Active BAT in adult humans was re-discovered in a metabolic context relatively recently, in 2007, which increased the interest in this field markedly. When activated, BAT has very high energy expenditure per tissue weight. There are currently no safe and comfortable ways to induce BAT recruitment and activation, potentially except for short exposure to moderate cold (II). It is hoped that BAT recruitment and activation may be utilised, in the future, to increase energy expenditure and be used to treat obesity.

In this thesis, I have investigated thyroxine (IV), noradrenaline and a beta-3 selective agonist, CL 316,243 (I). I found that thyroxine recruits BAT, but thyroxine can raise energy expenditure in UCP1-knockout (UCP1-KO) mice as well. I also found that noradrenaline and CL 316,243 both activated BAT, with noradrenaline being slightly more efficient, and injections of these drugs could be used to measure maximum BAT activity in vivo utilising respirometry. I have also determined that as little as 15-minute exposure per day to moderate cold could significantly recruit UCP1 (II).

Diets can also impact BAT. I have investigated the effects of diets high in fat and sugar (HFD) (III; V) on BAT. I found that mice fed these diets increased energy expenditure, especially during mealtime, in a UCP1-dependent manner. Finally, I found that highly recruited UCP1 did not protect against obesity when not activated. Mice with highly recruited, but non-active, UCP1 even transiently gained more weight than mice with non-recruited UCP1.

sted, utgiver, år, opplag, sider
Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2023. s. 125
Emneord
Obesity, brown adipose tissue, uncoupling protein 1, moderate cold exposure, calorimetry, thyroxine, dietary protein, thermic effect of food, diet-induced thermogenesis, adrenergic stimulation, mice, physiology
HSV kategori
Forskningsprogram
molekylär biovetenskap
Identifikatorer
urn:nbn:se:su:diva-214080 (URN)978-91-8014-172-7 (ISBN)978-91-8014-173-4 (ISBN)
Disputas
2023-03-17, Vivi Täckholmsalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20, STOCKHOLM, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-02-27 Laget: 2023-01-23 Sist oppdatert: 2023-02-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Person

Lindsund, ErikCannon, BarbaraNedergaard, Jan

Søk i DiVA

Av forfatter/redaktør
Lindsund, ErikCannon, BarbaraNedergaard, Jan
Av organisasjonen
I samme tidsskrift
Molecular Metabolism

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 94 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf