Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interdependent Electronic Structure, Protonation, and Solvatization of Aqueous 2-Thiopyridone
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0002-7023-2486
Number of Authors: 32019 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 123, no 26, p. 5555-5567Article in journal (Refereed) Published
Abstract [en]

2-Thiopyridone (2-TP), a common model system for excited-state proton transfer, has been simulated in aqueous solution with ab initio molecular dynamics. The interplay of electronic structure, protonation, and solvatization is investigated by comparison of three differently protonated molecular forms and between the lowest singlet and triplet electronic states. An interdependence clearly manifests in the mixed-character T-1 state for the 2-TP form, systematic structural distortions of the 2-mercaptopyridine (2-MP) form, and photobase protolysis of the 2-TP- form, in the aqueous phase. In comparison, simplified continuum models for the solvatization are found to be significantly inaccurate for several of the species. To facilitate future computational studies, we therefore present a minimal representative solvatization complex for each stable form and electronic state. Our findings demonstrate the importance of explicit solvatization of the compound and sets the studies. stage for including it also in future studies.

Place, publisher, year, edition, pages
2019. Vol. 123, no 26, p. 5555-5567
National Category
Physical Sciences Chemical Sciences
Research subject
Theoretical Physics
Identifiers
URN: urn:nbn:se:su:diva-171766DOI: 10.1021/acs.jpcb.9b03084ISI: 000474796300018PubMedID: 31244103Scopus ID: 2-s2.0-85068181707OAI: oai:DiVA.org:su-171766DiVA, id: diva2:1346577
Available from: 2019-08-28 Created: 2019-08-28 Last updated: 2022-11-02Bibliographically approved
In thesis
1. Fingerprints of light-induced molecular transients: from quantum chemical models of ultrafast x-ray spectroscopy
Open this publication in new window or tab >>Fingerprints of light-induced molecular transients: from quantum chemical models of ultrafast x-ray spectroscopy
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Absorption of sunlight generates renewable electricity and powers the growth of plants, but also causes severe damage both to synthetic materials and biological tissue. The wildly varying outcomes of these light-induced processes are ultimately determined by much slighter differences in their underlying reaction pathways, induced by the transient properties of short-lived and miniscule molecules; a powerful approach to their detection and characterization is offered by ultrafast x-ray spectroscopy, with identification of spectral fingerprints and further guidance from quantum chemical models.

This thesis contains the computational half of three experimentally joint projects that push the limits for detection of electronic, spin and structural dynamics of small molecular systems in solution. A wide selection of theoretical frameworks are combined to model various aspects of the measurements: from multi-configurational descriptions of non-adiabatic couplings in the photo-dynamics and multi-electron transitions in the x-ray spectroscopy, to affordable simulations of extensive aqueous solutions by density functional theory and classical mechanics.

Applied to experimental data, the presented quantum chemical results allowed in particular to: simultaneously identify molecular forms and electronic states of aqueous 2-thiopyridone, to determine a detailed pathway for its excited-state proton-transfer; characterize the charge-transfer state of aqueous ferricyanide, to extend well-known concepts from steady-state spectroscopy into the ultrafast domain; establish the newly implemented framework of multi-configurational Dyson orbitals, as a powerful tool for simulation of photoelectron spectroscopy.

A number of computational predictions are additionally presented for hitherto-unexplored experimental regions, which may help to guide and optimize future measurements.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2020. p. 64
Keywords
time-resolved x-ray spectroscopy, quantum chemistry, electronic structure, multi-configurational self-consistent field, density functional theory, molecular dynamics, Born-Oppenheimer dynamics, non-adiabatic dynamics, proton-transfer, charge-transfer, solvatization, Dyson orbital
National Category
Atom and Molecular Physics and Optics
Research subject
Theoretical Physics
Identifiers
urn:nbn:se:su:diva-179758 (URN)978-91-7911-052-9 (ISBN)978-91-7911-053-6 (ISBN)
Public defence
2020-04-22, FA32, Albanova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2015-03956
Available from: 2020-03-30 Created: 2020-03-09 Last updated: 2022-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Norell, JesperLjungdahl, AntonOdelius, Michael

Search in DiVA

By author/editor
Norell, JesperLjungdahl, AntonOdelius, Michael
By organisation
Department of Physics
In the same journal
Journal of Physical Chemistry B
Physical SciencesChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 92 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf