Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identification of boosted Higgs bosons decaying into b-quark pairs with the ATLAS detector at 13 TeV
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 29302019 (English)In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 10, article id 836Article in journal (Refereed) Published
Abstract [en]

This paper describes a study of techniques for identifying Higgs bosons at high transverse momenta decaying into bottom-quark pairs, H -> b (b) over bar, for proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy root s = 13 TeV. These decays are reconstructed from calorimeter jets found with the anti-k(t) R = 1.0 jet algorithm. To tag Higgs bosons, a combination of requirements is used: b-tagging of R = 0.2 track-jets matched to the large-R calorimeter jet, and requirements on the jet mass and other jet substructure variables. The Higgs boson tagging efficiency and corresponding multijet and hadronic top-quark background rejections are evaluated using Monte Carlo simulation. Several benchmark tagging selections are defined for different signal efficiency targets. The modelling of the relevant input distributions used to tag Higgs bosons is studied in 36 fb(-1) of data collected in 2015 and 2016 using g -> b (b) over bar and Z(-> b (b) over bar)gamma event selections in data. Both processes are found to be well modelled within the statistical and systematic uncertainties.

Place, publisher, year, edition, pages
2019. Vol. 79, no 10, article id 836
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-175848DOI: 10.1140/epjc/s10052-019-7335-xISI: 000490454500014OAI: oai:DiVA.org:su-175848DiVA, id: diva2:1369446
Available from: 2019-11-12 Created: 2019-11-12 Last updated: 2019-12-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Backman, FilipBarranco Navarro, LauraBohm, ChristianCarney, Rebecca M. D.Clement, ChristopheHellman, StenJon-And, KerstinKastanas, AlexandrosMilstead, David A.Moa, TorbjörnPasuwan, PatrawanShaikh, Nabila W.Silverstein, Samuel B.Sjölin, JörgenStrandberg, SaraUghetto, MichaëlValdés Santurio, EduardoWallängen, Veronica
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
European Physical Journal C
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf