Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Large loss of CO2 in winter observed across the northern permafrost region
Show others and affiliations
Number of Authors: 752019 (English)In: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 9, no 11, p. 852-857Article in journal (Refereed) Published
Abstract [en]

Recent warming in the Arctic, which has been amplified during the winter(1-3), greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)(4). However, the amount of CO2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates(5,6). Here we synthesize regional in situ observations of CO2 flux from Arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1,662 TgC per year from the permafrost region during the winter season (October-April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1,032 TgC per year). Extending model predictions to warmer conditions up to 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway 4.5-and 41% under business-as-usual emissions scenario-Representative Concentration Pathway 8.5. Our results provide a baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.

Place, publisher, year, edition, pages
2019. Vol. 9, no 11, p. 852-857
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-176603DOI: 10.1038/s41558-019-0592-8ISI: 000493735100018OAI: oai:DiVA.org:su-176603DiVA, id: diva2:1376862
Available from: 2019-12-10 Created: 2019-12-10 Last updated: 2020-02-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Natali, Susan M.Abbott, Benjamin W.Arndt, Kyle A.Christensen, Torben R.Crill, PatrickElberling, BoFriborg, ThomasGöckede, MathiasMichelsen, AndersParmentier, Frans-Jan W.Schmidt, Niels M.Treat, Claire C.
By organisation
Department of Geological Sciences
In the same journal
Nature Climate Change
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf