Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detecting sequence signals in targeting peptides using deep learning
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
Visa övriga samt affilieringar
Antal upphovsmän: 72019 (Engelska)Ingår i: Life science alliance, E-ISSN 2575-1077, Vol. 2, nr 5, artikel-id UNSP e201900429Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In bioinformatics, machine learning methods have been used to predict features embedded in the sequences. In contrast to what is generally assumed, machine learning approaches can also provide new insights into the underlying biology. Here, we demonstrate this by presenting TargetP 2.0, a novel state-of-the-art method to identify N-terminal sorting signals, which direct proteins to the secretory pathway, mitochondria, and chloroplasts or other plastids. By examining the strongest signals from the attention layer in the network, we find that the second residue in the protein, that is, the one following the initial methionine, has a strong influence on the classification. We observe that two-thirds of chloroplast and thylakoid transit peptides have an alanine in position 2, compared with 20% in other plant proteins. We also note that in fungi and single-celled eukaryotes, less than 30% of the targeting peptides have an amino acid that allows the removal of the N-terminal methionine compared with 60% for the proteins without targeting peptide. The importance of this feature for predictions has not been highlighted before.

Ort, förlag, år, upplaga, sidor
2019. Vol. 2, nr 5, artikel-id UNSP e201900429
Nationell ämneskategori
Biokemi och molekylärbiologi
Identifikatorer
URN: urn:nbn:se:su:diva-176753DOI: 10.26508/lsa.201900429ISI: 000494674100006PubMedID: 31570514OAI: oai:DiVA.org:su-176753DiVA, id: diva2:1377160
Tillgänglig från: 2019-12-11 Skapad: 2019-12-11 Senast uppdaterad: 2019-12-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Salvatore, MarcoEmanuelsson, OlofWinther, Olevon Heijne, GunnarElofsson, Arne
Av organisationen
Institutionen för biokemi och biofysikScience for Life Laboratory (SciLifeLab)
Biokemi och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 54 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf