Open this publication in new window or tab >>2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Inspiration for developing robust porous materials from sustainable reagents was acquired by determining the crystal structures of bismuth subsalicylate and bibrocathol, two long-used and commonly available bismuth-based pharmaceuticals. From these insights, a number of coordination polymers and metal-organic frameworks (MOFs) were developed, facilitating the synthesis of robust porous materials from sustainably sourced reagents. The structural investigations were carried out using advanced transmission electron microscopy techniques, including three-dimensional electron diffraction.
Using Bi3+ to synthesize MOFs, a previously unreported type of the so-called ‘breathing effect’ was observed in two materials. The breathing originates in the inorganic part of the obtained metal-organic structures and was thoroughly investigated for the bismuth-carboxylate framework SU-100. Taking further inspiration from bismuth-based metallodrugs, pseudo-polymorphs of the metallodrug bismuth subgallate were prepared, yielding coordination networks of varying periodicities. Following this line of work, a bismuth-phenolate MOF was prepared using ellagic acid—a phenolic molecule isolated from plant-based waste. The resulting material, SU-101, can be synthesized in water under ambient conditions and exhibits excellent chemical robustness, remaining crystalline upon exposure to harsh aqueous solutions and toxic gases. A second metal-ellagate framework, SU-102, was prepared using zirconium, yielding an equally robust framework. The material was evaluated for the capture and degradation of pharmaceutical pollutants from the effluent of a wastewater treatment plant, showing a selectivity towards cationic pharmaceuticals. This work highlights the potential of using natural products to create high-performing and chemically robust porous materials, for use in applications such as water remediation and the adsorption of toxic gases.
Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University, 2022. p. 74
Keywords
metal-organic frameworks, material synthesis, pharmaceuticals, porous materials, crystallography
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
urn:nbn:se:su:diva-210556 (URN)978-91-8014-076-8 (ISBN)978-91-8014-077-5 (ISBN)
Public defence
2022-12-09, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
2022-11-162022-10-252022-11-09Bibliographically approved