Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ecosystem-wide metagenomic binning enables prediction of ecological niches from genomes
Show others and affiliations
Number of Authors: 122020 (English)In: Communications Biology, E-ISSN 2399-3642, Vol. 3, no 1, article id 119Article in journal (Refereed) Published
Abstract [en]

Alneberg et al. conduct metagenomics binning of water samples collected over major environmental gradients in the Baltic Sea. They use machine-learning to predict the placement of genome clusters along niche gradients based on the content of functional genes. The genome encodes the metabolic and functional capabilities of an organism and should be a major determinant of its ecological niche. Yet, it is unknown if the niche can be predicted directly from the genome. Here, we conduct metagenomic binning on 123 water samples spanning major environmental gradients of the Baltic Sea. The resulting 1961 metagenome-assembled genomes represent 352 species-level clusters that correspond to 1/3 of the metagenome sequences of the prokaryotic size-fraction. By using machine-learning, the placement of a genome cluster along various niche gradients (salinity level, depth, size-fraction) could be predicted based solely on its functional genes. The same approach predicted the genomes' placement in a virtual niche-space that captures the highest variation in distribution patterns. The predictions generally outperformed those inferred from phylogenetic information. Our study demonstrates a strong link between genome and ecological niche and provides a conceptual framework for predictive ecology based on genomic data.

Place, publisher, year, edition, pages
2020. Vol. 3, no 1, article id 119
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-181178DOI: 10.1038/s42003-020-0856-xISI: 000521060500003PubMedID: 32170201OAI: oai:DiVA.org:su-181178DiVA, id: diva2:1429018
Available from: 2020-05-07 Created: 2020-05-07 Last updated: 2022-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Riemann, LasseEkman, Martin

Search in DiVA

By author/editor
Riemann, LasseEkman, Martin
By organisation
Department of Ecology, Environment and Plant Sciences
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 92 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf