Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Flawed risk assessment of antifouling paints leads to exceedance of guideline values in Baltic Sea marinas
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
Antal upphovsmän: 42020 (Engelska)Ingår i: Environmental Science and Pollution Research, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 27, nr 22, s. 27674-27687Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The seasonal variations of dissolved and bioavailable copper (Cu) and zinc (Zn) were studied in two recreational marinas in Sweden and Finland. The time series from the two marinas were characterized by rising concentrations during the spring boat launching, elevated concentrations all through the peak boating season, and decreasing concentrations in autumn when boats were retrieved for winter storage. This pattern shows a clear link between Cu and Zn concentrations and boating activity, with antifouling paints as the principal source. The leaching from antifouling paints was also found to significantly alter the speciation of dissolved Cu and Zn in marina waters, with an increase of the proportion of metals that may be considered bioavailable. This change in speciation, which occurred without any change in dissolved organic carbon (DOC), further increases the environmental risk posed by antifouling paints. In the Swedish marina, dissolved Cu and Zn exceed both Environmental Quality Standards (EQS) and Predicted No Effect Concentrations (PNEC), indicating that the current Swedish risk assessment (RA) of antifouling paints is failing to adequately protect the marine environment. An evaluation of the RA performance showed the underlying cause to be an underestimation of the predicted environmental concentration (PEC) by factors of 2 and 5 for Cu and Zn, respectively. For both metals, the use of inaccurate release rates for the PEC derivation was found to be either mainly (Cu) or partly (Zn) responsible for the underestimation. For Zn, the largest source of error seems to be the use of an inappropriate partitioning coefficient (K-D) in the model. To ensure that the use of antifouling coatings does not adversely impact the sensitive Baltic Sea, it is thus recommended that the K-D value for Zn is revised and that representative release rates are used in the RA procedure.

Ort, förlag, år, upplaga, sidor
2020. Vol. 27, nr 22, s. 27674-27687
Nyckelord [en]
Antifouling paint, Copper, Zinc, Risk assessment, Baltic Sea
Nationell ämneskategori
Geovetenskap och miljövetenskap
Forskningsämne
tillämpad miljövetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-183007DOI: 10.1007/s11356-020-08973-0ISI: 000531793800007PubMedID: 32394257OAI: oai:DiVA.org:su-183007DiVA, id: diva2:1450472
Tillgänglig från: 2020-07-01 Skapad: 2020-07-01 Senast uppdaterad: 2022-03-23Bibliografiskt granskad
Ingår i avhandling
1. Occurrence and environmental risk assessment of antifouling paint biocides from leisure boats
Öppna denna publikation i ny flik eller fönster >>Occurrence and environmental risk assessment of antifouling paint biocides from leisure boats
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The use of biocidal antifouling (AF) paints is the most common way to prevent fouling on leisure boat hulls. The main aim of this thesis was to investigate the pathways through which AF biocides, past and present, may reach the environment through their use on leisure boats and to improve the risk assessment of biocidal AF paints intended for amateur use. The work presented focuses mainly on the Baltic Sea, with emphasis on regulation and risk assessment procedures in Sweden. A new method was developed for the quantification of nowadays banned organotin compounds (OTCs) such as tributyltin (TBT) in paint flakes (paper I). OTCs were detected in hull paint scrapings from three countries around the Baltic Sea. Thus, historic layers of organotin paint on leisure boats may constitute as sources of TBT to the marine environment. Total tin was identified as an indicator for the presence of OTCs on boat hulls, allowing for quicker identification of vessels in need of remediation. Nowadays, most AF paints tend to contain high amounts of copper (Cu) and zinc (Zn). The use of AF paints was shown to cause exceedance of guideline values for these two metals in soil, sediment and water in various investigated marinas (papers II and IV). The pollution of boatyard soil was linked to hull maintenance activities carried out over unprotected ground (paper II). AF paints were also found to impact both the concentration and speciation of dissolved Cu and Zn in two Baltic Sea marinas, with increased concentrations as well as an increased proportion of bioavailable species as a function of an increased number of moored boats (paper IV). A new method utilizing X-Ray Fluorescence (XRF) was used to derive the release rates of Cu and Zn in the field for five commercially available AF paints for amateur use (paper III). Salinity and paint properties were found to be important parameters affecting the release. The in situ release rates were also found to exceed those derived with current standardized release rate methods. Given the high release rates, none of the studied paints should have been approved for the Swedish market. This finding likely explains the exceedance of guideline values for dissolved Cu and Zn in investigated Baltic Sea marinas (paper IV). In conclusion, there is a need for caution when authorizing new biocides as the phasing out of banned substances can be a lengthy process due to their continued presence in historic paint layers. Additionally, paint-specific release rates determined under conditions reflecting the intended use of the product should be used for a more realistic environmental risk assessment of AF paints.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2019. s. 49
Nyckelord
Antifouling paint, XRF, leisure boat, recreational boating, copper, zinc, tributyltin, organotin compounds, risk assessment, biocide, metals, release rate
Nationell ämneskategori
Miljövetenskap
Forskningsämne
tillämpad miljövetenskap
Identifikatorer
urn:nbn:se:su:diva-167281 (URN)978-91-7797-655-4 (ISBN)978-91-7797-663-9 (ISBN)
Disputation
2019-05-24, William-Olssonsalen, Geovetenskapens hus, Svante Arrhenius väg 14, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
BONUS - Science for a better future of the Baltic Sea regionNaturvårdsverket
Anmärkning

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

Tillgänglig från: 2019-04-29 Skapad: 2019-03-25 Senast uppdaterad: 2022-02-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Person

Lagerström, MariaEriksson-Wiklund, Ann-Kristin

Sök vidare i DiVA

Av författaren/redaktören
Lagerström, MariaEriksson-Wiklund, Ann-Kristin
Av organisationen
Institutionen för miljövetenskap och analytisk kemi
I samma tidskrift
Environmental Science and Pollution Research
Geovetenskap och miljövetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 59 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf