Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exposing the distinctive modular behavior of β-strands and α-helices in folded proteins
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.ORCID iD: 0000-0002-6048-6896
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Number of Authors: 42020 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 117, no 46, p. 28775-28783Article in journal (Refereed) Published
Abstract [en]

Although folded proteins are commonly depicted as simplistic combinations of β-strands and α-helices, the actual properties and functions of these secondary-structure elements in their native contexts are just partly understood. The principal reason is that the behavior of individual β- and α-elements is obscured by the global folding cooperativity. In this study, we have circumvented this problem by designing frustrated variants of the mixed α/β-protein S6, which allow the structural behavior of individual β-strands and α-helices to be targeted selectively by stopped-flow kinetics, X-ray crystallography, and solution-state NMR. Essentially, our approach is based on provoking intramolecular "domain swap." The results show that the α- and β-elements have quite different characteristics: The swaps of β-strands proceed via global unfolding, whereas the α-helices are free to swap locally in the native basin. Moreover, the α-helices tend to hybridize and to promote protein association by gliding over to neighboring molecules. This difference in structural behavior follows directly from hydrogen-bonding restrictions and suggests that the protein secondary structure defines not only tertiary geometry, but also maintains control in function and structural evolution. Finally, our alternative approach to protein folding and native-state dynamics presents a generally applicable strategy for in silico design of protein models that are computationally testable in the microsecond–millisecond regime.

Place, publisher, year, edition, pages
2020. Vol. 117, no 46, p. 28775-28783
Keywords [en]
structural cooperativity, secondary structure, protein dynamics, protein design
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-188725DOI: 10.1073/pnas.1920455117ISI: 000591360600005PubMedID: 33148805OAI: oai:DiVA.org:su-188725DiVA, id: diva2:1519641
Available from: 2021-01-19 Created: 2021-01-19 Last updated: 2022-02-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Wang, HuabingDanielsson, JensOliveberg, Mikael

Search in DiVA

By author/editor
Wang, HuabingDanielsson, JensOliveberg, Mikael
By organisation
Department of Biochemistry and Biophysics
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf