Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries: insight into local structure and interfacial kinetics
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
Antal upphovsmän: 42020 (Engelska)Ingår i: Materials Today Energy, ISSN 2468-6069, Vol. 18, artikel-id 100505Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Hard carbons are the most promising negative active materials for sodium ion storage. In this work, a simple synthesis approach is proposed to produce hard carbon microspheres (CMSs) (with a mean diameter of similar to 1.3 mm) from resorcinol-formaldehyde precursors produced via acid-catalyzed polycondensation reaction. Samples prepared at 1200, 1400, and 1500 degrees C showed different electrochemical behavior in terms of reversible capacity, initial coulombic efficiency (iCE), and the mechanism of sodium ion storage. The specific capacity contributions from the flat voltage profile (<0.1 V) and the sloping voltage region (0.1-1 V) showed strong correlation to the local structure (and carbonization temperature) determined by the interlayer spacing (d(002)) and the Raman ID/IG ratio of the hard carbons (HCs) and the rate of cycling. Electrochemical tests indicated that the HC synthesized at 1500 degrees C performed best with an iCE of 85-89% and a reversible capacity of 300-340 mAh g(-1) at 10 mA g(-1), with the majority of charge stored below 0.1 V. The d002 and the ID/IG ratio for the sample were similar to 3.7 A and similar to 1.27, respectively, parameters indicative of the ideal local structure in HCs required for optimum performance in sodiumion cells. In addition, galvanostatic tests on three-electrode half-cells cells revealed that sodium metal plating occurred as cycling rates were increased beyond 80 mA g(-1) leading to considerably high capacity and poor coulombic efficiency, a point that must be considered in full-cell batteries. Pairing the hard CMS electrodes with Prussian white positive electrode, a proof-of-concept cell could provide a specific capacity of almost 100 mAh g(-1) maintained for more than 50 cycles with a nominal voltage of 3 V.

Ort, förlag, år, upplaga, sidor
2020. Vol. 18, artikel-id 100505
Nyckelord [en]
Resorcinol-formaldehyde, Disordered carbon, Prussian white, Rate performance, Sodium-ion battery
Nationell ämneskategori
Kemi
Identifikatorer
URN: urn:nbn:se:su:diva-190710DOI: 10.1016/j.mtener.2020.100505ISI: 000601397500003OAI: oai:DiVA.org:su-190710DiVA, id: diva2:1531972
Tillgänglig från: 2021-02-28 Skapad: 2021-02-28 Senast uppdaterad: 2022-02-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Asfaw, H. D.Tai, Cheuk-Wai

Sök vidare i DiVA

Av författaren/redaktören
Asfaw, H. D.Tai, Cheuk-Wai
Av organisationen
Institutionen för material- och miljökemi (MMK)
I samma tidskrift
Materials Today Energy
Kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 24 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf