Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Combined Catalysis for Engineering Bioinspired, Lignin-Based, Long-Lasting, Adhesive, Self-Mending, Antimicrobial Hydrogels
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
Visa övriga samt affilieringar
Antal upphovsmän: 112020 (Engelska)Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 14, nr 12, s. 17004-17017Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The engineering of multifunctional biomaterials using a facile sustainable methodology that follows the principles of green chemistry is still largely unexplored but would be very beneficial to the world. Here, the employment of catalytic reactions in combination with biomass-derived starting materials in the design of biomaterials would promote the development of eco-friendly technologies and sustainable materials. Herein, we disclose the combination of two catalytic cycles (combined catalysis) comprising oxidative decarboxylation and quinone-catechol redox catalysis for engineering lignin-based multifunctional antimicrobial hydrogels. The bioinspired design mimics the catechol chemistry employed by marine mussels in nature. The resultant multifunctional sustainable hydrogels (1) are robust and elastic, (2) have strong antimicrobial activity, (3) are adhesive to skin tissue and various other surfaces, and (4) are able to self-mend. A systematic characterization was carried out to fully elucidate and understand the facile and efficient catalytic strategy and the subsequent multifunctional materials. Electron paramagnetic resonance analysis confirmed the long-lasting quinone-catechol redox environment within the hydrogel system. Initial in vitro biocompatibility studies demonstrated the low toxicity of the hydrogels. This proof-of-concept strategy could be developed into an important technological platform for the eco-friendly, bioinspired design of other multifunctional hydrogels and their use in various biomedical and flexible electronic applications.

Ort, förlag, år, upplaga, sidor
2020. Vol. 14, nr 12, s. 17004-17017
Nyckelord [en]
combined catalysis, lignin, bioinspired, antimicrobial, self-healing, hydrogel, adhesive
Nationell ämneskategori
Kemi
Identifikatorer
URN: urn:nbn:se:su:diva-190638DOI: 10.1021/acsnano.0c06346ISI: 000603308800063PubMedID: 33306909OAI: oai:DiVA.org:su-190638DiVA, id: diva2:1534904
Tillgänglig från: 2021-03-05 Skapad: 2021-03-05 Senast uppdaterad: 2022-02-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Person

Afewerki, SamsonTai, Cheuk-WaiZhou, ShengyangXu, Chao

Sök vidare i DiVA

Av författaren/redaktören
Afewerki, SamsonTai, Cheuk-WaiZhou, ShengyangXu, Chao
Av organisationen
Institutionen för material- och miljökemi (MMK)
I samma tidskrift
ACS Nano
Kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 126 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf