Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The rise of novelty in marine ecosystems: The Baltic Sea case
Stockholm University, Faculty of Science, Stockholm Resilience Centre.ORCID iD: 0000-0002-3968-2008
Stockholm University, Faculty of Science, Stockholm Resilience Centre.ORCID iD: 0000-0001-8405-8717
Show others and affiliations
2021 (English)In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 27, no 7, p. 1485-1499Article in journal (Refereed) Published
Abstract [en]

Global environmental changes have accelerated at an unprecedented rate in recent decades due to human activities. As a consequence, the incidence of novel abiotic conditions and biotic communities, which have been continuously emerging in the Earth system, has rapidly risen. Despite growing attention to the incidence and challenges posed by novelty in terrestrial ecosystems, novelty has not yet been quantified in marine ecosystems. Here, we measured for the rate of novelty (RoN) in abiotic conditions and community structure for three trophic levels, i.e., phytoplankton, zooplankton, and fish, in a large marine system - the Baltic Sea. We measured RoN as the degree of dissimilarity relative to a specific spatial and temporal baseline, and contrasted this with the rate of change as a measure of within-basin change over time. We found that over the past 35 years abiotic and biotic RoN showed complex dynamics varying in time and space, depending on the baseline conditions. RoN in abiotic conditions was smaller in the open Central Baltic Sea than in the Kattegat and the more enclosed Gulf of Bothnia, Gulf of Riga, and Gulf of Finland in the north. We found a similar spatial pattern for biotic assemblages, which resulted from changes in composition and stock size. We identified sea-surface temperature and salinity as key drivers of RoN in biotic communities. Hence, future environmental changes that are expected to affect the biogeochemistry of the Baltic Sea, may favor the rise of biotic novelty. Our results highlighted the need for a deeper understanding of novelty development in marine ecosystems, including interactions between species and trophic levels, ecosystem functioning under novel abiotic conditions, and considering novelty in future management interventions.

Place, publisher, year, edition, pages
2021. Vol. 27, no 7, p. 1485-1499
Keywords [en]
General Environmental Science, Ecology, Environmental Chemistry, Global and Planetary Change
National Category
Ecology
Identifiers
URN: urn:nbn:se:su:diva-197606DOI: 10.1111/gcb.15503ISI: 000611960300001OAI: oai:DiVA.org:su-197606DiVA, id: diva2:1601706
Available from: 2021-10-10 Created: 2021-10-10 Last updated: 2022-02-25Bibliographically approved
In thesis
1. Novelty in the Anthropocene: Exploring past and future novelty in marine social-ecological systems
Open this publication in new window or tab >>Novelty in the Anthropocene: Exploring past and future novelty in marine social-ecological systems
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Humans have become the major driving force of change, deeply affecting the Earth system and the biosphere. In marine ecosystems specifically, climate-related environmental changes and anthropogenic pressures (e.g., fishing, the introduction of new species, nutrient load) have altered the structures and functioning of social-ecological systems (SES). These changes have created novel, never encountered before, SES dynamics. Novelty, a natural process of SES dynamics, has accelerated due to human activities. On the one hand, novelty allows SES to adapt to change, including maintaining their functions and resilience. On the other hand, the fast-emerging novelty in the Anthropocene epoch is unpredictable and increases the uncertainty related to management and predicting models. Despite consensus on the need for acknowledging novelty in SES, there is much confusion associated with this concept. This thesis provides a unifying conceptualization of novelty in SES by linking Complex Adaptive Systems theories and ecological novelty concepts. The papers that make up this thesis are an empirical contribution to understanding novelty in marine SES in the past and future. Novelty was measured in multiple social and ecological components of the Baltic Sea SES across different temporal and spatial scales. Although novelty is important for SES adaptation to change, it can be a problem or a solution - depending on its rate, drivers, and scale. There is a need to foster novelty that could enhance SES resilience and sustainability, in order to achieve good environmental status in marine ecosystems and for human wellbeing.

Place, publisher, year, edition, pages
Stockholm: Stockholm Resilience Centre, Stockholm University, 2021. p. 53
Keywords
Novelty, marine ecosystems, Social-Ecological Systems, Baltic Sea, Complex Adaptive Systems
National Category
Earth and Related Environmental Sciences
Research subject
Sustainability Science
Identifiers
urn:nbn:se:su:diva-198093 (URN)978-91-7911-676-7 (ISBN)978-91-7911-677-4 (ISBN)
Public defence
2021-12-10, Vivi Täckholmsalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20, and online via Zoom, public link is available at the department website, Stockholm, 14:00 (English)
Opponent
Supervisors
Available from: 2021-11-17 Created: 2021-10-26 Last updated: 2022-02-25Bibliographically approved

Open Access in DiVA

fulltext(1787 kB)150 downloads
File information
File name FULLTEXT01.pdfFile size 1787 kBChecksum SHA-512
5376384c7cbfb40494011c2a3fd2f1dc991cce0a8f8a30db0c70c8fb3b3bef2a3657185fcab7e8ef21d9ce2ab5261b14561512791e324d5b2f8d05df5c90beef
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Ammar, YosrNiiranen, SusaMöllmann, ChristianFinsinger, WalterBlenckner, Thorsten

Search in DiVA

By author/editor
Ammar, YosrNiiranen, SusaMöllmann, ChristianFinsinger, WalterBlenckner, Thorsten
By organisation
Stockholm Resilience Centre
In the same journal
Global Change Biology
Ecology

Search outside of DiVA

GoogleGoogle Scholar
Total: 150 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 154 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf