Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Turbulent radiative diffusion and turbulent Newtonian cooling
Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi. Carnegie Mellon University, USA; Ilia State University, Georgia.ORCID-id: 0000-0002-7304-021X
Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).ORCID-id: 0000-0003-2302-2280
Rekke forfattare: 22021 (engelsk)Inngår i: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 33, nr 9, artikkel-id 095125Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Radiation transport plays an important role in stellar atmospheres, but the effects of turbulence are being obscured by other effects such as stratification. Using radiative hydrodynamic simulations of forced turbulence, we determine the decay rates of sinusoidal large-scale temperature perturbations of different wavenumbers in the optically thick and thin regimes. Increasing the wavenumber increases the rate of decay in both regimes, but this effect is much weaker than for the usual turbulent diffusion of passive scalars, where the increase is quadratic for small wavenumbers. The turbulent decay is well described by an enhanced Newtonian cooling process in the optically thin limit, which is found to show a weak increase proportional to the square root of the wavenumber. In the optically thick limit, the increase in turbulent decay is somewhat steeper for wavenumbers below the energy-carrying wavenumber of the turbulence, but levels off toward larger wavenumbers. In the presence of turbulence, the typical cooling time is comparable to the turbulent turnover time. We observe that the temperature takes a long time to reach equilibrium in both the optically thin and thick cases, but in the former, the temperature retains smaller scale structures for longer.

sted, utgiver, år, opplag, sider
2021. Vol. 33, nr 9, artikkel-id 095125
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-199878DOI: 10.1063/5.0065485ISI: 000717659200010OAI: oai:DiVA.org:su-199878DiVA, id: diva2:1625855
Tilgjengelig fra: 2022-01-10 Laget: 2022-01-10 Sist oppdatert: 2022-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Brandenburg, AxelDas, Upasana

Søk i DiVA

Av forfatter/redaktør
Brandenburg, AxelDas, Upasana
Av organisasjonen
I samme tidsskrift
Physics of fluids

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 5 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf