Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures
Visa övriga samt affilieringar
Antal upphovsmän: 372022 (Engelska)Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 375, nr 6582Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

INTRODUCTION: Endocrine disrupting chemicals (EDCs) are compounds that interfere with physiological hormonal regulation. Humans are pervasively exposed to many different EDCs, and a growing body of evidence indicates that early life exposure to such EDC mixtures can induce changes in the human organism that underlie increased susceptibility to diseases throughout the life span, including neurodevelopmental disorders. Chemical regulation is, however, entirely based on the risk assessment of individual compounds, leaving the real-life impact of chemical mixtures unexamined and unregulated. This is relevant insofar as cumulative exposure to multiple compounds may be associated with adverse health outcomes even when the concentrations of individual chemicals fall below the regulatory dose.

RATIONALE: We set out to make the epidemiological associations between exposure to mixtures and health outcomes experimentally tractable, defining molecular pathways and dose responses that could be translated back to actual human exposures and thereby refine current risk assessment practices. As opposed to previous studies that focused on single compounds, we identified and tested an EDC mixture associated with adverse neurodevelopmental outcomes in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) pregnancy cohort (MIX N) by integrating epidemiological data with experimental toxicology and characterized real life–relevant exposure.

RESULTS: We used weighted quantile sum (WQS) regression to identify chemicals associated with language delay in children and included those chemicals in MIX N. MIX N was synthesized following the relative proportions and total concentrations found in the SELMA cohort. It was then tested in both in vitro and in vivo models. In human fetal primary neural stem cells and three-dimensional cortical brain organoids differentiated from human pluripotent stem cells, transcriptomic analysis showed that MIX N interferes with hormonal pathways and dysregulates expression of genes and biological pathways that are causally linked to autism spectrum disorders. Data from experiments in Xenopus leavis and Danio rerio, in vivo models validated by the Organisation for Economic Co-operation and Development (OECD), confirmed thyroid function as one of the key and unifying points of vulnerability to MIX N and linked thyroid disruption to neurodevelopmental effects measured as alterations in locomotor activity. The resulting dose-response relationships were then used to estimate a point of departure (POD), which is the toxicological measure to estimate no-effect concentration. This enabled us to apply a similar mixture approach (SMACH) where we (i) identified individuals in the SELMA study who were sufficiently similarly exposed compared with the experimental mixtures and (ii) determined the proportion of the SELMA children with exposure ranges of concern using the POD as reference.

CONCLUSION: Integrating experimental and epidemiological evidence, we established mechanistic and correlative evidence for neurodevelopmental adversities of an EDC mixture associated with language delay. Using the generated experimental data in a risk assessment concept, we found increased odds of language delay in offspring of up to 54% of pregnant women. These results emphasize the need to take mixtures into account during chemical testing and risk assessment and provide an integrative framework to guide risk assessment strategies.

 

Ort, förlag, år, upplaga, sidor
2022. Vol. 375, nr 6582
Nationell ämneskategori
Geovetenskap och miljövetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-203179DOI: 10.1126/science.abe8244ISI: 000758142600037PubMedID: 35175820OAI: oai:DiVA.org:su-203179DiVA, id: diva2:1646846
Tillgänglig från: 2022-03-24 Skapad: 2022-03-24 Senast uppdaterad: 2022-03-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Person

Bergman, ÅkeRudén, Christina

Sök vidare i DiVA

Av författaren/redaktören
Germain, Pierre-LucEngdahl, ElinLindh, ChristianChorev, Nadav EvenD'Agostino, Giuseppe AlessandroBergman, ÅkeÖberg, MattiasRudén, ChristinaGennings, Chris
Av organisationen
Institutionen för miljövetenskap
I samma tidskrift
Science
Geovetenskap och miljövetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 100 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf