Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Physicochemical classification of organisms
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.ORCID iD: 0000-0002-8204-7798
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.ORCID iD: 0000-0003-1919-7520
2022 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 119, no 19, article id e2122957119Article in journal (Refereed) Published
Abstract [en]

The hypervariable residues that compose the major part of proteins’ surfaces are generally considered outside evolutionary control. Yet, these “nonconserved” residues determine the outcome of stochastic encounters in crowded cells. It has recently become apparent that these encounters are not as random as one might imagine, but carefully orchestrated by the intracellular electrostatics to optimize protein diffusion, interactivity, and partner search. The most influential factor here is the protein surface-charge density, which takes different optimal values across organisms with different intracellular conditions. In this study, we examine how far the net-charge density and other physicochemical properties of proteomes will take us in terms of distinguishing organisms in general. The results show that these global proteome properties not only follow the established taxonomical hierarchy, but also provide clues to functional adaptation. In many cases, the proteome–property divergence is even resolved at species level. Accordingly, the variable parts of the genes are not as free to drift as they seem in sequence alignment, but present a complementary tool for functional, taxonomic, and evolutionary assignment. 

Place, publisher, year, edition, pages
2022. Vol. 119, no 19, article id e2122957119
Keywords [en]
proteome properties, taxonomy, protein electrostatics, intracellular diffusion, functional evolution
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-206247DOI: 10.1073/pnas.2122957119ISI: 000854009500015PubMedID: 35500111Scopus ID: 2-s2.0-85129401503OAI: oai:DiVA.org:su-206247DiVA, id: diva2:1668617
Available from: 2022-06-13 Created: 2022-06-13 Last updated: 2023-08-30Bibliographically approved
In thesis
1. Navigating the Cellular Crowd: Physicochemical Properties of Protein Surfaces as Evolved Interaction Guides
Open this publication in new window or tab >>Navigating the Cellular Crowd: Physicochemical Properties of Protein Surfaces as Evolved Interaction Guides
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The cellular interior is characterised by high concentrations of macromolecules. Compared with dilute conditions, the crowd modifies proteins' ability to fold, diffuse and, ultimately, carry out their biological functions. Cellular fitness depends on ensuring an adequate balance between interactivity and diffusivity.

In this thesis, I discuss how a colloidal description of the cell highlights the central role of electrostatics in protein surface optimisation. By recognising that the modulation of protein-protein interactions concerns the whole proteome, I map the physicochemical preferences of cellular organisms across taxonomic and ecological divisions. Moreover, I propose that all surface residues participate in tuning protein interactions to the correct affinity, within a continuum that spans several orders of magnitude. Finally, I turn to horizontally spreading inteins to gauge the strength of the selective pressures acting on protein surfaces.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2023. p. 47
Keywords
protein interactions, inteins, physicochemical properties, protein surfaces, evolution, cellular crowding, electrostatics
National Category
Biophysics
Research subject
Biophysics
Identifiers
urn:nbn:se:su:diva-219982 (URN)978-91-8014-408-7 (ISBN)978-91-8014-409-4 (ISBN)
Public defence
2023-09-22, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16B, Stockholm, 09:00 (English)
Opponent
Supervisors
Available from: 2023-08-30 Created: 2023-08-10 Last updated: 2023-08-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Vallina Estrada, EloyOliveberg, Mikael

Search in DiVA

By author/editor
Vallina Estrada, EloyOliveberg, Mikael
By organisation
Department of Biochemistry and Biophysics
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf