Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Contribution of wood burning to exposures of PAHs and oxy-PAHs in Eastern Sweden
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0003-4309-8282
Show others and affiliations
Number of Authors: 72022 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 22, no 17, p. 11359-11379Article in journal (Refereed) Published
Abstract [en]

A growing trend in developed countries is the use of wood as fuel for domestic heating due to measures taken to reduce the usage of fossil fuels. However, this imposed another issue with the environment and human health. That is, the emission from wood burning contributed to the increased level of atmospheric particulates and the wood smoke caused various respiratory diseases. The aim of this study was to investigate the impact of wood burning on the polycyclic aromatic hydrocarbons (PAHs) in air PM10 using known wood burning tracers, i.e. levoglucosan, mannosan and galactosan from the measurement at the urban background and residential areas in Sweden. A yearly measurement from three residential areas in Sweden showed a clear seasonal variation of PAHs during the cold season mainly from increased domestic heating and meteorology. Together, an increased sugar level assured the wood burning during the same period. The sugar ratio (levoglucosan(mannosan+galactosan)) was a good marker for wood burning source such as the wood type used for domestic heating and garden waste burning. On the Walpurgis Night, the urban background measurement demonstrated a dramatic increase in levoglucosan, benzo[a]pyrene (B[a]P) and oxygenated PAHs (OPAHs) concentrations from the increased wood burning. A significant correlation between levoglucosan and OPAHs was observed suggesting OPAHs to be an indicator of wood burning together with levoglucosan. The levoglucosan tracer method and modelling used in predicting the B[a]P concentration could not fully explain the measured levels in the cold season. The model showed that the local wood source contributed to 98 % of B[a]P emissions in the Stockholm area and 2 % from the local traffic. However, non-local sources were dominating in the urban background (60 %). A further risk assessment estimated that the airborne particulate PAHs caused 13.4 cancer cases per 0.1 million inhabitants in Stockholm County.

Place, publisher, year, edition, pages
2022. Vol. 22, no 17, p. 11359-11379
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-209457DOI: 10.5194/acp-22-11359-2022ISI: 000849846400001OAI: oai:DiVA.org:su-209457DiVA, id: diva2:1696775
Available from: 2022-09-19 Created: 2022-09-19 Last updated: 2022-09-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Lim, HwanmiNilsson, UlrikaWesterholm, RogerJohansson, Christer

Search in DiVA

By author/editor
Lim, HwanmiNilsson, UlrikaWesterholm, RogerJohansson, Christer
By organisation
Department of Materials and Environmental Chemistry (MMK)Department of Environmental Science
In the same journal
Atmospheric Chemistry And Physics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf