Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Time- and temperature-dependent dynamics of prothoracicotropic hormone and ecdysone sensitivity co-regulate pupal diapause in the green-veined white butterfly Pieris napi
Stockholm University, Faculty of Science, Department of Zoology.ORCID iD: 0000-0003-2899-0862
Stockholm University, Faculty of Science, Department of Zoology.ORCID iD: 0000-0001-7815-4868
Stockholm University, Faculty of Science, Department of Zoology.ORCID iD: 0000-0003-2785-5108
Stockholm University, Faculty of Science, Department of Zoology.ORCID iD: 0000-0002-4560-6271
Show others and affiliations
2022 (English)In: Insect Biochemistry and Molecular Biology, ISSN 0965-1748, E-ISSN 1879-0240, Vol. 149, article id 103833Article in journal (Refereed) Published
Abstract [en]

Diapause, a general shutdown of developmental pathways, is a vital adaptation allowing insects to adjust their life cycle to adverse environmental conditions such as winter. Diapause in the pupal stage is regulated by the major developmental hormones prothoracicotropic hormone (PTTH) and ecdysone. Termination of pupal diapause in the butterfly Pieris napi depends on low temperatures; therefore, we study the temperature-dependence of PTTH secretion and ecdysone sensitivity dynamics throughout diapause, with a focus on diapause termination. While PTTH is present throughout diapause in the cell bodies of two pairs of neurosecretory cells in the brain, it is absent in the axons, and the PTTH concentration in the haemolymph is significantly lower during diapause than during post diapause development, indicating that the PTTH signaling is reduced during diapause. The sensitivity of pupae to ecdysone injections is dependent on diapause stage. While pupae are sensitive to ecdysone during early diapause initiation, they gradually lose this sensitivity and become insensitive to non-lethal concentrations of ecdysone about 30 days into diapause. At low temperatures, reflecting natural overwintering conditions, diapause termination propensity after ecdysone injection is precocious compared to controls. In stark contrast, at high temperatures reflecting late summer and early autumn conditions, sensitivity to ecdysone does not return. Thus, here we show that PTTH secretion is reduced during diapause, and additionally, that the low ecdysone sensitivity of early diapause maintenance is lost during termination in a temperature dependent manner. The link between ecdysone sensitivity and low-temperature dependence reveals a putative mechanism of how diapause termination operates in insects that is in line with adaptive expectations for diapause.

Place, publisher, year, edition, pages
2022. Vol. 149, article id 103833
Keywords [en]
Diapause termination, 20-Hydroxyecdysone, Time- and-low-temperature-dependence, Prothoracicotropic hormone, Pieris napi
National Category
Zoology
Research subject
Zoological physiology
Identifiers
URN: urn:nbn:se:su:diva-209555DOI: 10.1016/j.ibmb.2022.103833ISI: 000862895300002PubMedID: 36084800Scopus ID: 2-s2.0-85138594948OAI: oai:DiVA.org:su-209555DiVA, id: diva2:1697716
Available from: 2022-09-21 Created: 2022-09-21 Last updated: 2023-09-14Bibliographically approved
In thesis
1. Unraveling the regulatory mechanisms of pupal diapause termination
Open this publication in new window or tab >>Unraveling the regulatory mechanisms of pupal diapause termination
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Diapause is an essential part of many insect’s life cycle and is a developmental halt induced by environmental cues in advance of deteriorating conditions. Insects typically enter diapause to avoid unfavorable environmental conditions like low temperatures, poor food quality and the absence of conspecifics. The aim of my PhD thesis was to describe how diapause is regulated and what determines its termination timing in the green-veined white butterfly Pieris napi. Answers to these questions deepens the knowledge about species distribution and population dynamics in times of a rapidly changing climate. 

In ectothermic insects, developmental rate generally follows a thermal performance curve (TPC) with higher temperatures leading to a faster development. However, in the diapause of P. napi low temperatures result in a higher proportion of terminations. In Chapter I, I assessed the thermal performance of diapause termination rate in P. napi by exposing them to several different temperature treatments. The diapause termination rate follows a left-shifted TPC with an optimum termination rate at 0°C and slower termination rates toward higher temperatures. This left-shifted TPC prevents the precocious termination of diapause in autumn while at the same time enabling populations to remain synchronized over a long period. 

Development in insects is regulated by the major developmental hormones, insulins, juvenile hormones, ecdysone, and the prothoracicotropic hormone (PTTH). The pupal diapause is regulated by the neuropeptide PTTH produced in the brain and ecdysone produced in the prothoracic glands. In Chapter II I studied this hormonal axis by assessing PTTH levels and injections with 20-hydroxyecdysone (20E), the active form of the ecdysone pathway. The PTTH neuropeptide shows diapause stage dependent changes to haemolymph levels and intracellular structure and the sensitivity to 20E returns in a time- and temperature dependent manner correlating with diapause termination progression. This indicates that diapause termination timing is regulated by the PTTH ecdysone axis and that the ecdysteroid receptor has a central part in the regulation.  

Diapause is a prolonged period without the ability to replenish energy resources, insects therefore accumulate resources before diapause and reduce the metabolic rate to a minimum. In Chapter III, I investigated how the diapause physiology as well as the reduced metabolic rate affect the mode of respiration. Respiratory patterns change with diapause stages and in diapause, discontinuous gas exchange is defended even at high temperatures, supporting the finding that the diapause physiology affects the metabolic rate and with it the respiratory patterns. 

In Chapter IV I followed up the lead from Chapter II and tested a hypothesis on the hormonal regulation of diapause termination in which the transcription factor Foxo, the ecdysteroid receptor as well as insulin interact to regulate ecdysone sensitivity. While many findings in the transcriptome and the protein levels support the hypothesis we need further investigations into this mechanism. Furthermore, the protein levels of most proteins studied do not correlate with the mRNA levels, and while this has been described under direct developing conditions too it would be interesting to study where those different levels stem from. 

These findings show that the three levels, temperature, metabolic rate and the hormonal pathways are tightly linked to the diapause physiology and are most likely involved in the regulation of diapause termination timing. 

Place, publisher, year, edition, pages
Stockholm: Department of Zoology, Stockholm University, 2023. p. 40
Keywords
Diapause, diapause termination, prothoracicotropic hormone, ecdysone, thermal performance
National Category
Zoology
Research subject
Functional Zoomorphology
Identifiers
urn:nbn:se:su:diva-221103 (URN)978-91-8014-498-8 (ISBN)978-91-8014-499-5 (ISBN)
Public defence
2023-10-27, Vivi Täckholmsalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 159 6301
Available from: 2023-10-04 Created: 2023-09-14 Last updated: 2023-09-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Süess, PhilipDircksen, HeinrichRoberts, Kevin T.Gotthard, KarlNässel, Dick R.Wheat, Christopher W.Carlsson, Mikael A.Lehmann, Philipp

Search in DiVA

By author/editor
Süess, PhilipDircksen, HeinrichRoberts, Kevin T.Gotthard, KarlNässel, Dick R.Wheat, Christopher W.Carlsson, Mikael A.Lehmann, Philipp
By organisation
Department of Zoology
In the same journal
Insect Biochemistry and Molecular Biology
Zoology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 98 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf