Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Skin permeability prediction with MD simulation sampling spatial and alchemical reaction coordinates
Show others and affiliations
Number of Authors: 62022 (English)In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 121, no 20, p. 3837-3849Article in journal (Refereed) Published
Abstract [en]

A molecular-level understanding of skin permeation may rationalize and streamline product development, and improve quality and control, of transdermal and topical drug delivery systems. It may also facilitate toxicity and safety assessment of cosmetics and skin care products. Here, we present new molecular dynamics simulation approaches that make it possible to efficiently sample the free energy and local diffusion coefficient across the skin’s barrier structure to predict skin permeability and the effects of chemical penetration enhancers. In particular, we introduce a new approach to use two-dimensional reaction coordinates in the accelerated weight histogram method, where we combine sampling along spatial coordinates with an alchemical perturbation virtual coordinate. We present predicted properties for 20 permeants, and demonstrate how our approach improves correlation with ex vivo/in vitro skin permeation data. For the compounds included in this study, the obtained log KPexp-calc mean square difference was 0.9 cm2 h−2.

Place, publisher, year, edition, pages
Biophysical Society , 2022. Vol. 121, no 20, p. 3837-3849
Keywords [en]
cutaneous drug administration, metabolism, molecular dynamics, permeability, skin, skin absorption, Administration, Cutaneous, Molecular Dynamics Simulation
National Category
Chemical Sciences Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:su:diva-211911DOI: 10.1016/j.bpj.2022.09.009ISI: 000928435100009PubMedID: 36104960Scopus ID: 2-s2.0-85138811844OAI: oai:DiVA.org:su-211911DiVA, id: diva2:1714569
Available from: 2022-11-30 Created: 2022-11-30 Last updated: 2024-06-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Lindahl, Erik

Search in DiVA

By author/editor
Lindahl, Erik
By organisation
Department of Biochemistry and BiophysicsScience for Life Laboratory (SciLifeLab)
In the same journal
Biophysical Journal
Chemical SciencesOther Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf