This article is devoted to a study of the Hardy space Hlog(Rd) introduced by Bonami, Grellier, and Ky. We present an alternative approach to their result relating the product of a function in the real Hardy space H1 and a function in BMO to distributions that belong to Hlog based on dyadic paraproducts. We also point out analogues of classical results of Hardy–Littlewood, Zygmund, and Stein for Hlog and related Musielak–Orlicz spaces.