Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Changes in the foliar fungal community between oak leaf flushes along a latitudinal gradient in Europe
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.ORCID iD: 0000-0001-9827-4664
Show others and affiliations
2022 (English)In: Journal of Biogeography, ISSN 0305-0270, E-ISSN 1365-2699, Vol. 49, no 12, p. 2269-2280Article in journal (Refereed) Published
Abstract [en]

Aim: Leaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities are structured and assembled, we assessed to what extent leaf flush and latitude can explain the within- and among-tree variation in foliar fungal communities.

Location: A latitudinal gradient spanning c. 20 degrees in latitude in Europe.

Taxa: The foliar fungal community associated with a foundation tree species, the pedunculate oak Quercus robur.

Methods: We examined the main and interactive effects of leaf flush and latitude on the foliar fungal community by sampling 20 populations of the pedunculate oak Quercus robur across the tree's range. We used the ITS region as a target for characterization of fungal communities using DNA metabarcoding.

Results: Species composition, but not species richness, differed between leaf flushes. Across the latitudinal gradient, species richness was highest in the central part of the oak's distributional range, and foliar fungal community composition shifted along the latitudinal gradient. Among fungal guilds, the relative abundance of plant pathogens and mycoparasites was lower on the first leaf flush, and the relative abundance of plant pathogens and saprotrophs decreased with latitude.

Conclusions: Changes in community composition between leaf flushes and along the latitudinal gradient were mostly a result of species turnover. Overall, our findings demonstrate that leaf flush and latitude explain 5%–22% of the small- and large-scale spatial variation in the foliar fungal community on a foundation tree within the temperate region. Using space-for-time substitution, we expect that foliar fungal community structure will change with climate warming, with an increase in the abundance of plant pathogens and mycoparasites at higher latitudes, with major consequences for plant health, species interactions and ecosystem dynamics.

Place, publisher, year, edition, pages
2022. Vol. 49, no 12, p. 2269-2280
Keywords [en]
community composition, foliar fungi, growing season, latitude, leaf flush, Quercus robur
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-212624DOI: 10.1111/jbi.14508ISI: 000867490900001Scopus ID: 2-s2.0-85139763167OAI: oai:DiVA.org:su-212624DiVA, id: diva2:1717633
Available from: 2022-12-09 Created: 2022-12-09 Last updated: 2022-12-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Gaytán, ÁlvaroGotthard, KarlPawlowski, KatharinaTack, Ayco J. M.

Search in DiVA

By author/editor
Gaytán, ÁlvaroGotthard, KarlPawlowski, KatharinaTack, Ayco J. M.
By organisation
Department of Ecology, Environment and Plant SciencesDepartment of Zoology
In the same journal
Journal of Biogeography
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf