Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sometimes Size Does Not Matter
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.ORCID-id: 0000-0003-2767-8818
Antal upphovsmän: 32023 (Engelska)Ingår i: Foundations of physics, ISSN 0015-9018, E-ISSN 1572-9516, Vol. 53, nr 1, artikel-id 1Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Recently Díaz, Hössjer and Marks (DHM) presented a Bayesian framework to measure cosmological tuning (either fine or coarse) that uses maximum entropy (maxent) distributions on unbounded sample spaces as priors for the parameters of the physical models (https://doi.org/10.1088/1475-7516/2021/07/020). The DHM framework stands in contrast to previous attempts to measure tuning that rely on a uniform prior assumption. However, since the parameters of the models often take values in spaces of infinite size, the uniformity assumption is unwarranted. This is known as the normalization problem. In this paper we explain why and how the DHM framework not only evades the normalization problem but also circumvents other objections to the tuning measurement like the so called weak anthropic principle, the selection of a single maxent distribution and, importantly, the lack of invariance of maxent distributions with respect to data transformations. We also propose to treat fine-tuning as an emergence problem to avoid infinite loops in the prior distribution of hyperparameters (common to all Bayesian analysis), and explain that previous attempts to measure tuning using uniform priors are particular cases of the DHM framework. Finally, we prove a theorem, explaining when tuning is fine or coarse for different families of distributions. The theorem is summarized in a table for ease of reference, and the tuning of three physical parameters is analyzed using the conclusions of the theorem.

Ort, förlag, år, upplaga, sidor
2023. Vol. 53, nr 1, artikel-id 1
Nyckelord [en]
Bayesian statistics, Constants of nature, Emergence, Fine-tuning, Fundamental constants, Infinites, Maximum entropy, Standard models, Weak anthropic principle
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:su:diva-213533DOI: 10.1007/s10701-022-00650-1ISI: 000887803700001Scopus ID: 2-s2.0-85142246341OAI: oai:DiVA.org:su-213533DiVA, id: diva2:1724703
Tillgänglig från: 2023-01-09 Skapad: 2023-01-09 Senast uppdaterad: 2023-01-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Hössjer, Ola

Sök vidare i DiVA

Av författaren/redaktören
Hössjer, Ola
Av organisationen
Matematiska institutionen
I samma tidskrift
Foundations of physics
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 20 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf