Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Prediction of Chronic Inflammation for Inhaled Particles: the Impact of Material Cycling and Quarantining in the Lung Epithelium
Show others and affiliations
2020 (English)In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 32, no 47, article id 2003913Article in journal (Refereed) Published
Abstract [en]

On a daily basis, people are exposed to a multitude of health-hazardous airborne particulate matter with notable deposition in the fragile alveolar region of the lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modeling, it is determined herein that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows prediction of the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modeling, potentially relating outcomes to material properties for a large number of materials, and thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, this work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives. 

Place, publisher, year, edition, pages
2020. Vol. 32, no 47, article id 2003913
Keywords [en]
advanced microscopies, adverse outcome pathways, disease prediction, material safety and health hazards, mode of action
National Category
Materials Chemistry Occupational Health and Environmental Health
Identifiers
URN: urn:nbn:se:su:diva-214205DOI: 10.1002/adma.202003913ISI: 000579030900001PubMedID: 33073368Scopus ID: 2-s2.0-85092622114OAI: oai:DiVA.org:su-214205DiVA, id: diva2:1731265
Available from: 2023-01-26 Created: 2023-01-26 Last updated: 2024-03-11Bibliographically approved
In thesis
1. Development of large-scale molecular and nanomaterial models
Open this publication in new window or tab >>Development of large-scale molecular and nanomaterial models
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Molecular simulations can access unique atomic-scale information about new materials, pharmaceuticals, and biological environments, making cost-effective predictions and aiding experimental studies. They are particularly useful for describing the mechanisms of nanoscale phenomena and the biological/inorganic interfaces. However, the computational cost of molecular simulations increases with the size of the system as well as with the model complexity, which is related to the accuracy of the simulation. This thesis aims to develop efficient large-scale molecular models that capture important structural details of the atomistic simulations. In particular, we focus on the TiO2-lipid interface, which forms in the living cells, exposed to TiO2 nanomaterials, but is also relevant in the context of biomedical applications. We have studied the interface using atomistic molecular dynamics simulations and found that the characteristics of the lipid adsorption depend on the type of the TiO2 surface, lipid headgroup composition, and the presence of cholesterol. We then derive a coarse-grained molecular model of the TiO2-lipid interface to enable the large-scale simulations of TiO2 nanoparticles interacting with model cell membranes. We show that the strength of the lipid adsorption increases with the size of the nanoparticle and that a small TiO2 nanoparticle can become partially wrapped by a lipid membrane. To improve the transferability of the coarse-grained model, we design and test an artificial neural network that learns the interactions in coarse-grained water-methanol solutions from the structural data obtained in multiple reference simulations at atomistic resolution. We show that in the studied system, the neural network learns the many-body interactions and accurately reproduces the structural properties of the solution at different concentrations. 

Abstract [sv]

Molekylära simuleringar kan ge tillgång till unik information på atomnivå om nya material, läkemedel och biologiska miljöer, vilket gör det möjligt att göra kostnadseffektiva förutsägelser och underlätta experimentella studier. De är särskilt användbara för att beskriva mekanismerna för fenomen på nanoskala och de biologiska/oorganiska gränssnitten. Beräkningskostnaden för molekylära simuleringar ökar dock med systemets storlek såväl som med modellens komplexitet, vilket är relaterat till simuleringens noggrannhet. Den här avhandlingen syftar till att utveckla effektiva storskaliga molekylära modeller som fångar viktiga strukturella detaljer från de atomistiska simuleringarna. Särskilt fokuserar vi på gränssnittet mellan TiO2 och lipider, som bildas i levande celler, exponerade för TiO2-nanomaterial, men är också relevant inom biomedicinska tillämpningar. Vi har studerat gränssnittet med hjälp av atomistiska molekyldynamiksimuleringar och funnit att egenskaperna hos lipidadsorptionen beror på typen av TiO2-yta, sammansättningen av lipidhuvudgrupper och närvaron av kolesterol. Sedan härleder vi en grovkornig molekylär modell av TiO2-lipidgränssnittet för att möjliggöra storskaliga simuleringar av TiO2-nanopartiklar som interagerar med modellcellmembran. Vi visar att styrkan hos lipidadsorptionen ökar med nanopartiklens storlek och att en liten TiO2-nanopartikel delvis kan omslutas av ett lipidmembran. För att förbättra överförbarheten hos den grovkorniga modellen designar och testar vi ett artificiellt neuralt nätverk som lär sig interaktionerna i grovkorniga vatten-metanollösningar från strukturella data som erhållits i flera referenssimuleringar med atomär upplösning. Vi visar att i det studerade systemet lär sig det neurala nätverket flerkroppsinteraktioner och återger strukturegenskaperna hos lösningar med olika koncentrationer noggrant.

Abstract [ru]

Молекулярное моделирование может предоставить уникальную информацию с атомарным разрешением о новых материалах, лекарственных средствах и биологических средах, что делает его эффективным в прогнозировании и поддержке экспериментальных исследований. Особенной областью применения молекулярного моделирования является исследование процессов, происходящих на поверхности неорганических материалов, которые соприкосаются с биомолекулами. Однако, вычислительная сложность симуляций возрастает с размером моделируемой системы и сложностью модели, которая связана с точностью моделирования. Целью настоящей диссертации является разработка эффективных крупномасштабных молекулярных моделей, воспроизводящих ключевые особенности структуры молекулярных систем, полученных в ходе атомистического моделирования. В этой работе мы сосредотачиваемся на взаимодействии поверхности диоксида титана (TiO2) с молекулами липидов, которое возникает при попадании наночастиц TiO2 в живые клетки организма, что также является актуальным для биомедицинских исследований. Мы изучили взаимодействие с использованием атомистической молекулярной динамики и обнаружили, что адсорбция молекул липидов зависит от типа поверхности TiO2, функциональных групп в полярной части молекулы и присутствия холестерина. На основании полученных данных мы разработали грубозернистую молекулярную модель взаимодействия TiO2 с липидами для проведения крупномасштабных симуляций наночастиц диоксида титана, взаимодействующих с липидными мембранами, представляющих упрощённую структуру клеточных мембран. Наши симуляции показывают, что адсорбция липидов растёт вместе с радиусом наночастицы, а наночастица TiO2 с наименьшим радиусом оказывается лишь частично обёрнута липидной мембраной. Чтобы сделать полученные грубозернистые модели более универсальными, мы разработали и отладили нейронную сеть, которая учится воспроизводить взаимодействия в грубозернистых водно-метанольных растворах на основании структурных данных, полученных из нескольких атомистических симуляций. Мы демонстрируем, что в данной системе нейронная сеть учитывает многочастичные взаимодействия, что позволяет ей воспроизвести структурные свойства растворов разных концентраций с высокой точностью.  

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2024. p. 86
Keywords
Molecular simulations, Coarse-grained models, Lipids, TiO2 surface, Machine learning
National Category
Physical Chemistry
Research subject
Physical Chemistry
Identifiers
urn:nbn:se:su:diva-227287 (URN)978-91-8014-705-7 (ISBN)978-91-8014-706-4 (ISBN)
Public defence
2024-05-03, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B and online via Zoom, public link is available at the department website, Stockholm, 14:00 (English)
Opponent
Supervisors
Available from: 2024-04-10 Created: 2024-03-11 Last updated: 2024-03-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Ivanov, MikhailLyubartsev, Alexander P.

Search in DiVA

By author/editor
Ivanov, MikhailLyubartsev, Alexander P.
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Advanced Materials
Materials ChemistryOccupational Health and Environmental Health

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf