Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt228",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1148",{id:"formSmash:j_idt1148",widgetVar:"widget_formSmash_j_idt1148",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

####

#### Authority records

Montaruli, Anna Giulia
#### Search in DiVA

##### By author/editor

Montaruli, Anna Giulia
##### By organisation

Department of Mathematics
On the subject

Algebra and Logic
#### Search outside of DiVA

GoogleGoogle Scholar$(function(){PrimeFaces.cw('Chart','widget_formSmash_j_idt1353_0_downloads',{id:'formSmash:j_idt1353:0:downloads',type:'bar',responsive:true,data:[[5,13,5,7,12,17,12,9,11,4]],title:"Downloads of File (FULLTEXT01)",axes:{yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1744283'}],ticks:["Dec -23","Jan -24","Feb -24","Mar -24","Apr -24","May -24","Jun -24","Jul -24","Aug -24","Sep -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 201 downloads$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt1356",{id:"formSmash:j_idt1356",widgetVar:"widget_formSmash_j_idt1356",target:"formSmash:downloadLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade"});}); findCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1359",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[7,18,11,34,30,26,4,10,8,12]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:40,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1744283'}],ticks:["Dec -23","Jan -24","Feb -24","Mar -24","Apr -24","May -24","Jun -24","Jul -24","Aug -24","Sep -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 671 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1472",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt202",{id:"formSmash:upper:j_idt202",widgetVar:"widget_formSmash_upper_j_idt202",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt204_j_idt206",{id:"formSmash:upper:j_idt204:j_idt206",widgetVar:"widget_formSmash_upper_j_idt204_j_idt206",target:"formSmash:upper:j_idt204:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Representation theorems for abelian and model categoriesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2023 (English)Doctoral thesis, monograph (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 2023. , p. 254
##### Keywords [en]

Category Theory, Logic, Algebra, Homotopy Theory
##### National Category

Algebra and Logic
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-215564ISBN: 978-91-8014-248-9 (print)ISBN: 978-91-8014-249-6 (electronic)OAI: oai:DiVA.org:su-215564DiVA, id: diva2:1744283
##### Public defence

2023-05-05, lĂ¤rosal 22, hus 4, Albano, AlbanovĂ¤gen 12, Stockholm, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt568",{id:"formSmash:j_idt568",widgetVar:"widget_formSmash_j_idt568",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt574",{id:"formSmash:j_idt574",widgetVar:"widget_formSmash_j_idt574",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt581",{id:"formSmash:j_idt581",widgetVar:"widget_formSmash_j_idt581",multiple:true}); Available from: 2023-04-12 Created: 2023-03-17 Last updated: 2023-03-30Bibliographically approved

In this PhD thesis we investigate a representation theorem for small abelian categories and a representation theorem for left proper, enriched model categories, with the purpose of describing them concretely in terms of specific well-known categories.

For the abelian case, we study the constructivity issues of the Freyd-Mitchell Embedding Theorem, which states the existence of a full embedding from a small abelian category into the category of modules over an appropriate ring. We point out that a large part of its standard proof doesn't work in the constructive set theories **IZF** and **CZF** and in the logical system **IHOL**. Working constructively, we then define an embedding from a small abelian category into the category of sheaves of modules over a ringed space.

In the context of enriched model categories, we define homotopy enriched tiny objects and we prove that any left proper, enriched model category which is generated by these objects under weak equivalences, homotopy tensor products and homotopy colimits is, under certain extra hypothesis, Quillen equivalent to the enriched presheaf category over these objects. As we show, from our result it is possible to derive Elmendorf's Theorem for equivariant spaces and the Schwede-Shipley Theorem for spectral model categories.

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1396",{id:"formSmash:j_idt1396",widgetVar:"widget_formSmash_j_idt1396",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1454",{id:"formSmash:lower:j_idt1454",widgetVar:"widget_formSmash_lower_j_idt1454",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1455_j_idt1457",{id:"formSmash:lower:j_idt1455:j_idt1457",widgetVar:"widget_formSmash_lower_j_idt1455_j_idt1457",target:"formSmash:lower:j_idt1455:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});