Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ageing of High Energy Density Automotive Li-Ion Batteries: The Effect of Temperature and State-of-Charge
Show others and affiliations
Number of Authors: 102023 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 170, no 8, article id 080503Article in journal (Refereed) Published
Abstract [en]

Lithium ion batteries (LIB) have become a cornerstone of the shift to electric transportation. In an attempt to decrease the production load and prolong battery life, understanding different degradation mechanisms in state-of-the-art LIBs is essential. Here, we analyze how operational temperature and state-of-charge (SoC) range in cycling influence the ageing of automotive grade 21700 batteries, extracted from a Tesla 3 long Range 2018 battery pack with positive electrode containing LiNi(x)CoyAl(z)O(2) (NCA) and negative electrode containing SiOx-C. In the given study we use a combination of electrochemical and material analysis to understand degradation sources in the cell. Herein we show that loss of lithium inventory is the main degradation mode in the cells, with loss of material on the negative electrode as there is a significant contributor when cycled in the low SoC range. Degradation of NCA dominates at elevated temperatures with combination of cycling to high SoC (beyond 50%). (c) 2023 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BYNC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: permissions@ioppublishing.org.

Place, publisher, year, edition, pages
2023. Vol. 170, no 8, article id 080503
National Category
Materials Engineering Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-221347DOI: 10.1149/1945-7111/aceb8fISI: 001044526800001Scopus ID: 2-s2.0-85167873770OAI: oai:DiVA.org:su-221347DiVA, id: diva2:1800067
Available from: 2023-09-25 Created: 2023-09-25 Last updated: 2023-09-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Tai, Cheuk-Wai

Search in DiVA

By author/editor
Tai, Cheuk-Wai
By organisation
Inorganic and Structural Chemistry
In the same journal
Journal of the Electrochemical Society
Materials EngineeringMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf