Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A population of Type Ibc supernovae with massive progenitors Broad lightcurves not uncommon in (i)PTF
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Aarhus University, Denmark.ORCID iD: 0000-0001-6209-838x
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0003-1546-6615
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Aarhus University, Denmark.ORCID iD: 0000-0002-2387-6801
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0002-3821-6144
Show others and affiliations
Number of Authors: 122023 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 678, article id A87Article in journal (Refereed) Published
Abstract [en]

If high-mass stars (≳20 − 25 M) are the progenitors of stripped-envelope (SE) supernovae (SNe), their massive ejecta should lead to broad, long-duration lightcurves. Instead, literature samples of SE SNe have reported relatively narrow lightcurves corresponding to ejecta masses between 1 − 4 M that favor intermediate-mass progenitors (≲20 − 25 M). Working with an untargeted sample from a single telescope to better constrain their rates, we searched the Palomar Transient Factory (PTF) and intermediate-PTF (iPTF) sample of SNe for SE SNe with broad lightcurves. Using a simple observational marker of g- or r-band lightcurve stretch compared to a template to measure broadness, we identified eight significantly broader Type Ibc SNe after applying quantitative sample selection criteria. The lightcurves, broad-band colors, and spectra of these SNe are found to evolve more slowly relative to typical Type Ibc SNe, proportional with the stretch parameter. Bolometric lightcurve modeling and their nebular spectra indicate high ejecta masses and nickel masses, assuming radioactive decay powering. Additionally, these objects are preferentially located in low-metallicity host galaxies with high star formation rates, which may account for their massive progenitors, as well as their relative absence from the literature. Our study thus supports the link between broad lightcurves (as measured by stretch) and high-mass progenitor stars in SE SNe with independent evidence from bolometric lightcurve modeling, nebular spectra, host environment properties, and photometric evolution. In the first systematic search of its kind using an untargeted sample, we used the stretch distribution to identify a higher than previously appreciated fraction of SE SNe with broad lightcurves (∼13%). Correcting for Malmquist and lightcurve duration observational biases, we conservatively estimate that a minimum of ∼6% of SE SNe are consistent with high-mass progenitors. This result has implications for the progenitor channels of SE SNe, including late stages of massive stellar evolution, the origin of the observed oxygen fraction in the universe, and formation channels for stellar-mass black holes.

Place, publisher, year, edition, pages
2023. Vol. 678, article id A87
Keywords [en]
supernovae: general, methods: statistical, surveys, methods: data analysis, techniques: photometric
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-223850DOI: 10.1051/0004-6361/202245231ISI: 001084587200004Scopus ID: 2-s2.0-85175010454OAI: oai:DiVA.org:su-223850DiVA, id: diva2:1813279
Available from: 2023-11-20 Created: 2023-11-20 Last updated: 2023-11-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Karamehmetoglu, EmirSollerman, JesperTaddia, FrancescoBarbarino, CristinaFeindt, UlrichSchulze, Steve

Search in DiVA

By author/editor
Karamehmetoglu, EmirSollerman, JesperTaddia, FrancescoBarbarino, CristinaFeindt, UlrichSchulze, Steve
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)Department of Physics
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf