Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
In the past decade, there has been significant interest in heteroatom-doped porous carbons, driven by the distinctive and adjustable physical and chemical properties that they exhibit across scales, from the atomic to the macroscopic level. Particularly, attributes such as conductivity, electron density, high specific surface area, hierarchical pore structure, and oxidation resistance offer a wide range of characteristics for diverse applications. The development of multimodal, hierarchical pore sizes, ranging from micropores to macropores, ensures balanced diffusion resistance and a high surface area for active site accommodation. However, their synthesis usually involves multiple steps or complicated processing to incorporate both hierarchically porous structures and heteroatoms in carbon materials.
This PhD thesis explores poly(ionic liquid)s (PILs) for preparation of heteroatom-doped porous carbon materials, driven by the growing demand for functional carbons in industry and academia. The aim of this thesis is to develop straightforward synthetic approaches to introduce various heteroatoms and different pore sizes in the carbonous structure and study their diverse functions. Here, we propose and explore fabrication methods based on two precursors. First, PILs were examined as both the carbon and heteroatom source, serving as a sacrificial template for porous carbons. Second, the delicate structure of wood was employed as a carbon source to generate macropores, while being coated with PILs to introduce heteroatoms or iron-based nanoparticles and create additional micropores. Moreover, the application of these carbonaceous materials was studied in two areas, i.e., batteries and artificial enzymes. This research is likely to contribute to a deeper understanding of synthetic methodologies of heteroatom-doped porous carbon materials and their physiochemical properties for various applications.
Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University, 2024. p. 60
Keywords
Heteroatom doped carbon, Porous carbon membrane, Poly(ionic liquid)-derived carbon, Wood-derived carbon, Catalytic activity, Peroxidase-like activity, lithium sulfur battery
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-225583 (URN)978-91-8014-639-5 (ISBN)978-91-8014-640-1 (ISBN)
Public defence
2024-03-01, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
2024-02-072024-01-172024-02-15Bibliographically approved