Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Reproducing the Aral Sea water budget and sea-groundwater dynamics between 1979 and 1993 using a coupled 3-D sea-ice-groundwater model
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).ORCID-id: 0000-0001-9408-4425
2009 (engelsk)Inngår i: Journal of Marine Systems, Vol. 76, nr 3, s. 296-309Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We have developed the 3-D sea-ice model, ECOSMO, into a coupled sea-ice–groundwater model and investigated the factors that may have influenced the groundwater–seawater interactions and the water balance of the shrinking Aral Sea. During the simulation period, 1979–1993, the model successfully reproduced the rapid Aral Sea level drop, surface area decrease, coastline position changes and increasing salinization of the Aral Sea. Model predictions of evaporation and groundwater inflow were also consistent with independent estimations. Model results indicated that the net groundwater inflow to the Aral Sea may have increased by 10% or more as a direct effect of the sea level lowering. Furthermore, model scenario tests showed that in comparison with a basic scenario, in which salinity effects were accounted for, not accounting for such effects resulted in considerable changes in ice formation and winter thermal conditions, which in turn influenced the thermo- and hydrodynamics and fresh water air-sea fluxes in the Aral Sea. As a result, the zero-salinity scenario predicted higher evaporation rates and an accelerated sea level lowering by up to 2 cm/yr, in comparison with the basic scenario. Model results showed that increased groundwater inflow to the sea may have influenced the Aral Sea salinity distribution since the 1990's. Our results emphasise the importance of taking into account both baroclinic hydrodynamics, sea-ice dynamics and as well as potentially increased future groundwater-related salinity effects in order to accurately estimate the Aral Sea water balance. More generally, models that can handle such highly dynamic systems may have a realistic potential for making detailed assessments of sea characteristics under the influence of climate and hydrological cycle changes.

sted, utgiver, år, opplag, sider
Elsevier , 2009. Vol. 76, nr 3, s. 296-309
Emneord [en]
Aral Sea, Coupled model, ECOSMO, Water balance, Sea–groundwater interactions
Identifikatorer
URN: urn:nbn:se:su:diva-15734DOI: doi:10.1016/j.jmarsys.2008.03.018ISI: 000264317200006OAI: oai:DiVA.org:su-15734DiVA, id: diva2:182254
Tilgjengelig fra: 2008-12-09 Laget: 2008-12-09 Sist oppdatert: 2019-12-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Jarsjö, JerkerDestouni, Georgia
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 228 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf