Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hierarchical Incorporation of Reduced Graphene Oxide into Anisotropic Cellulose Nanofiber Foams Improves Their Thermal Insulation
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0002-5980-1641
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Philipps-Universität Marburg, Germany.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Leibniz University Hannover, Germany.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0009-0006-3703-3238
Show others and affiliations
2024 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 16, no 34, p. 45337-45346Article in journal (Refereed) Published
Abstract [en]

Anisotropic cellulose nanofiber (CNF) foams represent the state-of-the-art in renewable insulation. These foams consist of large (diameter >10 μm) uniaxially aligned macropores with mesoporous pore-walls and aligned CNF. The foams show anisotropic thermal conduction, where heat transports more efficiently in the axial direction (along the aligned CNF and macropores) than in the radial direction (perpendicular to the aligned CNF and macropores). Here we explore the impact on axial and radial thermal conductivity upon depositing a thin film of reduced graphene oxide (rGO) on the macropore walls in anisotropic CNF foams. To obtain rGO films on the foam walls we developed liquid-phase self-assembly to deposit rGO in a layer-by-layer fashion. Using electron and ion microscopy, we thoroughly characterized the resulting rGO-CNF foams and confirmed the successful deposition of rGO. These hierarchical rGO-CNF foams show lower radial thermal conductivity (λr) across a wide range of relative humidity compared to CNF control foams. Our work therefore demonstrates a potential method for improved thermal insulation in anisotropic CNF foams and introduces versatile self-assembly for postmodification of such foams.

Place, publisher, year, edition, pages
2024. Vol. 16, no 34, p. 45337-45346
Keywords [en]
Cellulose nanofiber foam, thermal conductivity, reduced graphene oxide, Layer-by-Layer, self-assembly, insulation, CNF
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-226809DOI: 10.1021/acsami.4c09654ISI: 001291830600001PubMedID: 39137951Scopus ID: 2-s2.0-85201370565OAI: oai:DiVA.org:su-226809DiVA, id: diva2:1839509
Available from: 2024-02-21 Created: 2024-02-21 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Colloidal Processing and Alignment of Wood-Based Dispersions and Hybrid Functional Foams
Open this publication in new window or tab >>Colloidal Processing and Alignment of Wood-Based Dispersions and Hybrid Functional Foams
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents novel methods and approaches for designing, preparing/fabricating, and characterizing wood-based nanomaterials. It investigates how modifications in structure, process variables, and composition can enhance functional properties. It employs advanced characterization techniques to analyze process-structure-property relationships and utilizes innovative colloidal processing approaches such as controlled nanoparticle incorporation, Layer-by-Layer self-assembly, and unidirectional ice-templating to improve the functional properties of wood-based nanomaterials.

A novel approach has been developed to fabricate lightweight, highly porous hybrid foams using iron oxide nanoparticles (IONP) and TEMPO-oxidized cellulose nanofibers (TOCNF). The addition of tannic acid (TA) and the application of a magnetic field-enhanced unidirectional ice-templating technique (MFUIT) enhanced processability, mechanical, and magnetic characteristics of the foams. The hybrid foam containing 87% IONPs exhibited a saturation magnetization of 83.2 emu g–1, which is equivalent to 95% of the magnetization value observed in bulk magnetite.

Hybrid, anisotropic foams have been prepared by incorporation of reduced graphene oxide (rGO) onto the macropore-walls of anisotropic TOCNF foams using a liquid-phase Layer-by-Layer self-assembly method. These hierarchical rGO-TOCNF foams exhibit lower radial thermal conductivity (λr) across a wide range of relative humidity compared to control TOCNF foams.

The shear-induced orientations and relaxations of multi-component dispersions containing cellulose nanocrystals (CNC) and montmorillonite nanoplatelets (MNT) have been studied by rheological small-angle X-ray scattering (Rheo-SAXS). The addition of MNT resulted in gelation and changes in flow behavior, shear responses, and relaxation dynamics. Rheo-SAXS measurements showed that CNC and MNT aligned under shear, creating aligned structures that relaxed upon shear removal. Gaining insights into shear-induced orientations and relaxation dynamics can aid in the development of advanced wood-based nanocomposite materials.

Transmission Electron Microscopy (TEM) was employed to characterize lignin oleate nanoparticles (OLNPs) derived from abundant lignin waste. TEM analysis revealed that the OLNPs had a spherical shape and a core-shell structure. Upon drying, the particles tended to agglomerate due to the loss of electrostatic repulsion forces. This agglomeration behavior indirectly supports the hypothesis that oleate chains act as a hydration barrier, preventing water permeation into the particles. 

Finally, a comprehensive study showed that TEMPO-oxidized lignocellulose nanofibers (TOLCNF)-based foams made from unbleached pulp can be used to prepare anisotropic, light-weight ice-templated foams with high mechanical strength. TOLCNF foams utilize lignin and hemicellulose to enhance properties while require less energy for production compared to TOCNF-based foams. This study emphasizes the potential for developing sustainable wood-based nanomaterials using TOLCNF.

The results presented in this thesis offer valuable insights for further advancements of wood-based nanomaterials. 

Abstract [sv]

Denna avhandling presenterar nya metoder och tillvägagångssätt för design, beredning/tillverkning och karakterisering av träbaserade nanomaterial. Den undersöker hur förändringar i struktur, processvariabler och sammansättning kan förbättra funktionella egenskaper. Avancerade karaktäriseringstekniker används för att analysera samband mellan process, struktur och egenskaper, och innovativa kolloidala bearbetningsmetoder såsom kontrollerad nanopartikelinkorporering, lager-på-lager-självmontering och unidirektionell is-templering används för att förbättra de funktionella egenskaperna hos träbaserade nanomaterial.

En ny metod har utvecklats för att tillverka lätta, högporösa hybridskum med järnoxidnanopartiklar (IONP) och TEMPO-oxiderade cellulosa nanofibrer (TOCNF). Tillsatsen av tanninsyra (TA) och användningen av en magnetfältförstärkt unidirektionell is-templeringsteknik (MFUIT) förbättrade bearbetningsbarheten, de mekaniska egenskaperna och de magnetiska egenskaperna hos skummen. Hybridskummet med 87 % IONP uppvisade en mättnadsmagnetisering på 83,2 emu g–1, vilket motsvarar 95 % av magnetiseringsvärdet hos bulk magnetit.

Hybrida, anisotropa skum har framställts genom att införliva reducerad grafenoxid (rGO) på makroporernas väggar av anisotropa TOCNF-skum med hjälp av en flytande fas Layer-by-Layer självmonteringsmetod. Dessa hierarkiska rGO-TOCNF-skum uppvisar lägre radial termisk ledningsförmåga (λr) över ett brett relativt fuktighetsområde jämfört med kontroll-TOCNF-skum.

Skjuvinducerade orienteringar och relaxationer av multikomponentdispersioner innehållande cellulosananokristaller (CNC) och montmorillonitnanoplattor (MNT) har studerats med hjälp av reologisk röntgenstrukturanalys med små vinklar (Rheo-SAXS). Tillsatsen av MNT resulterade i gelbildning och förändringar i flödesbeteende, skjuvresponser och relaxationsdynamik. Rheo-SAXS-mätningar visade att CNC och MNT linjerades upp under skjuvning, vilket skapade linjerade strukturer som slappnade av efter att skjuvningen avlägsnats. Att få insikt i skjuvinducerade orienteringar och relaxationsdynamik kan hjälpa vid utvecklingen av avancerade träbaserade nanokompositmaterial.

Transmissionselektronmikroskopi (TEM) användes för att karakterisera nanopartiklar av ligninoleat (OLNP) som härstammar från rikligt förekommande ligninavfall. TEM-analysen visade att OLNP hade en sfärisk form och en kärna-skal-struktur. Vid torkning tenderade partiklarna att agglomerera på grund av förlusten av elektrostatiska repulsionskrafter. Denna agglomerationsbeteende stöder indirekt hypotesen att oleatkedjorna fungerar som en hydratiseringsbarriär, vilket förhindrar vatteninträngning i partiklarna.

En omfattande studie visade att skum baserade på TEMPO-oxiderade lignocellulosa nanofibrer (TOLCNF) tillverkade av obelagd massa kan användas för att förbereda anisotropa, lätta is-templaterade skum med hög mekanisk styrka. TOLCNF-skum utnyttjar lignin och hemicellulosa för att förbättra egenskaper samtidigt som de kräver mindre energi för produktion jämfört med TOCNF-baserade skum. Studien betonar potentialen för att utveckla hållbara träbaserade nanomaterial med hjälp av TOLCNF.

Resultaten som presenteras i denna avhandling erbjuder värdefulla insikter för ytterligare framsteg inom träbaserade nanomaterial.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2024. p. 90
Keywords
wood-based nanomaterials, process-structure-property relationships, nanocellulose, lignocellulose nanofibers, rheology, small-angle X-ray scattering, lignin, tannic acid, unidirectional ice-templating, foams, aerogels, sustainability, träbaserade nanomaterial, process-struktur-egenskapsrelationer, nanocellulosa, lignocellulosananofibrer, reologi, småvinkelröntgenstrålning, lignin, garvsyra, riktad isstrukturering, skum, aerogeler, hållbarhet
National Category
Materials Chemistry Paper, Pulp and Fiber Technology
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-226813 (URN)978-91-8014-683-8 (ISBN)978-91-8014-684-5 (ISBN)
Public defence
2024-04-12, Magnéli Hall, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2024-03-20 Created: 2024-02-21 Last updated: 2024-05-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Hadi, Seyed EhsanÅhl, AgnesBergström, LennartHolm, Alexander

Search in DiVA

By author/editor
Hadi, Seyed EhsanÅhl, AgnesBergström, LennartHolm, Alexander
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
ACS Applied Materials and Interfaces
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 336 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf