Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Constraining the reflective properties of WASP-178 b using CHEOPS photometry
Stockholm University, Faculty of Science, Department of Astronomy.ORCID iD: 0000-0002-7201-7536
Stockholm University, Faculty of Science, Department of Astronomy.ORCID iD: 0000-0003-3747-7120
Number of Authors: 822024 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 682, article id A102Article in journal (Refereed) Published
Abstract [en]

Context. Multiwavelength photometry of the secondary eclipses of extrasolar planets is able to disentangle the reflected and thermally emitted light radiated from the planetary dayside. Based on this, we can measure the planetary geometric albedo Ag, which is an indicator of the presence of clouds in the atmosphere, and the recirculation efficiency ϵ, which quantifies the energy transport within the atmosphere.

Aims. We measure Ag and ϵ for the planet WASP-178 b, a highly irradiated giant planet with an estimated equilibrium temperature of 2450 K.

Methods. We analyzed archival spectra and the light curves collected by CHEOPS and TESS to characterize the host WASP-178, refine the ephemeris of the system, and measure the eclipse depth in the passbands of the two telescopes.

Results. We measured a marginally significant eclipse depth of 70 ± 40 ppm in the TESS passband, and a statistically significant depth of 70 ± 20 ppm in the CHEOPS passband.

Conclusions. Combining the eclipse-depth measurement in the CHEOPS (λeff = 6300 Å) and TESS (λeff = 8000 Å) passbands, we constrained the dayside brightness temperature of WASP-178 b in the 2250–2800 K interval. The geometric albedo 0.1< Ag<0.35 generally supports the picture that giant planets are poorly reflective, while the recirculation efficiency ϵ >0.7 makes WASP-178 b an interesting laboratory for testing the current heat-recirculation models.

Place, publisher, year, edition, pages
2024. Vol. 682, article id A102
Keywords [en]
planets and satellites: individual: wasp-178 b, techniques: photometric, planets and satellites: detection, planets and satellites: gaseous planets, planets and satellites: atmospheres
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-228318DOI: 10.1051/0004-6361/202346705ISI: 001188262400001Scopus ID: 2-s2.0-85185216038OAI: oai:DiVA.org:su-228318DiVA, id: diva2:1851062
Available from: 2024-04-12 Created: 2024-04-12 Last updated: 2024-04-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Brandeker, AlexisOlofsson, Göran

Search in DiVA

By author/editor
Brandeker, AlexisOlofsson, Göran
By organisation
Department of Astronomy
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf