Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
SU-101 for the removal of pharmaceutical active compounds by the combination of adsorption/photocatalytic processes
Show others and affiliations
Number of Authors: 82024 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 14, article id 7882Article in journal (Refereed) Published
Abstract [en]

Pharmaceutical active compounds (PhACs) are some of the most recalcitrant water pollutants causing undesired environmental and human effects. In absence of adapted decontamination technologies, there is an urgent need to develop efficient and sustainable alternatives for water remediation. Metal–organic frameworks (MOFs) have recently emerged as promising candidates for adsorbing contaminants as well as providing photoactive sites, as they possess exceptional porosity and chemical versatility. To date, the reported studies using MOFs in water remediation have been mainly focused on the removal of a single type of PhACs and rarely on the combined elimination of PhACs mixtures. Herein, the eco-friendly bismuth-based MOF, SU-101, has been originally proposed as an efficient adsorbent-photocatalyst for the elimination of a mixture of three challenging persistent PhACs, frequently detected in wastewater and surface water in ng L−1 to mg·L−1 concentrations: the antibiotic sulfamethazine (SMT), the anti-inflammatory diclofenac (DCF), and the antihypertensive atenolol (At). Adsorption experiments of the mixture revealed that SU-101 exhibited a great adsorption capacity towards At, resulting in an almost complete removal (94.1 ± 0.8% for combined adsorption) in only 5 h. Also, SU-101 demonstrated a remarkable photocatalytic activity under visible light to simultaneously degrade DCF and SMT (99.6 ± 0.4% and 89.2 ± 1.4%, respectively). In addition, MOF-contaminant interactions, the photocatalytic mechanism and degradation pathways were investigated, also assessing the toxicity of the resulting degradation products. Even further, recycling and regeneration studies were performed, demonstrating its efficient reuse for 4 consecutive cycles without further treatment, and its subsequent successful regeneration by simply washing the material with a NaCl solution.

Place, publisher, year, edition, pages
2024. Vol. 14, article id 7882
Keywords [en]
Combined elimination of several contaminants, Pharmaceutical active compounds, Photoactive Bi-MOF, SU-101, Toxicological evaluation, Water remediation
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-235485DOI: 10.1038/s41598-024-58014-wISI: 001273217900045PubMedID: 38570568Scopus ID: 2-s2.0-85189486500OAI: oai:DiVA.org:su-235485DiVA, id: diva2:1913552
Available from: 2024-11-15 Created: 2024-11-15 Last updated: 2024-11-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Willhammar, TomInge, A. Ken

Search in DiVA

By author/editor
Willhammar, TomInge, A. Ken
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Scientific Reports
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf