Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multimodal structural humidity-response of cellulose nanofibril foams derived from wood and upcycled cotton textiles
Stockholm University, Faculty of Science, Department of Chemistry.ORCID iD: 0009-0006-3703-3238
Stockholm University, Faculty of Science, Department of Chemistry.ORCID iD: 0000-0003-3677-0085
Stockholm University, Faculty of Science, Department of Chemistry. Villigen PSI, Switzerland.ORCID iD: 0000-0003-4441-8882
Show others and affiliations
2025 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 357, article id 123485Article in journal (Refereed) Published
Abstract [en]

We have produced foams from cellulose nanofibrils from upcycled cotton (upCNF) and wood (wCNF) through unidirectional (UIT) and multidirectional ice-templating (MIT) and investigated the structural humidity response through in-situ WAXS, SAXS, and micro tomography (μCT) between 10 and 95 % relative humidity (RH). The upCNF and wCNF WAXS patterns displayed a shape- and position shift as the RH was increased, with a compression in the (200) direction and an elongation in the (004) direction. The average separation distance extracted from the 1D SAXS patterns revealed no significant change for the upCNF foams regardless of RH and processing route, while a significant increase was observed for the wCNF foams. The μCT measurements of the upCNF foams showed a slight shift in macropore distribution towards larger pores between 50 and 80 % RH which can be attributed to the weakening and partial disintegration of the pore wall as more moisture is introduced. The humidity-induced structural alterations of the upCNF foam were significantly lower compared to the wCNF foams, confirming our claim of upCNF being more moisture resistant than wCNF foams.

Place, publisher, year, edition, pages
2025. Vol. 357, article id 123485
Keywords [en]
Nanocellulos, Textile upcycling, X-ray scattering, Tomography foams
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-241174DOI: 10.1016/j.carbpol.2025.123485Scopus ID: 2-s2.0-105000072302OAI: oai:DiVA.org:su-241174DiVA, id: diva2:1946873
Funder
Knut and Alice Wallenberg FoundationVinnova, 2018-04969Swedish Foundation for Strategic Research, SNP21-0004Swedish Research Council, 2018-07152Swedish Research Council Formas, 2019-02496Available from: 2025-03-24 Created: 2025-03-24 Last updated: 2025-04-01Bibliographically approved
In thesis
1. Cellulose Iß -Water Interactions: Exploring Moisture-Driven Vibrational Dynamics and Structural Transformations
Open this publication in new window or tab >>Cellulose Iß -Water Interactions: Exploring Moisture-Driven Vibrational Dynamics and Structural Transformations
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nanocellulose is an excellent candidate to replace traditionally fossil-derived materials. Although several cellulose nanomaterials (CNM) have reached the commercial market, the full potential of nanocellulose has yet to be realized. For the continued development of CNM for realistic applications, a deeper understanding on the influence of moisture on the structure and dynamics of these hygroscopic materials is needed. In this thesis, a combination of neutron and X-ray scattering has been deployed to evaluate the moisture-induced structural and dynamical alterations of CNM.

Inelastic neutron scattering (INS) was used to access the full vibrational spectra of nanocellulose with three different crystallinities, revealing that moisture primarily interacts with the disordered regions of the cellulose chains. A combination of INS, small angle neutron scattering, and wide angle X-ray scattering (WAXS) was used to link moisture-induced structural modifications in anisotropic cellulose nanocrystals (CNC) foams to the population change in the phonon density of states; an increasing separation distance between nanoparticles was suggested to suppress the effect of higher crystallinity index and larger coherence length.

The hydration-dependent dynamics and temperature-dependent water diffusion in nanocellulose were investigated using quasielastic neutron scattering. A localized rotational motion of the C6 hydrogens could be detected, and hydration was found to result in an increased cellulose chain mobility. At 270 K, water was found to diffuse independently of cellulose, with the extracted diffusion coefficient matching that of bulk water. At 310 K, the diffusion coefficient was lower than that of bulk water. This could be attributed to water diffusing on the surface of CNC, where the water-cellulose interactions may slow the diffusion.

Anisotropic cellulose nanofibril (CNF) foams obtained from upcycled cotton waste textiles (upCNF) and softwood (wCNF) were subjected to a relative humidity range of 10 and 90% and their structural humidity-response evaluated using in-situ small angle X-ray scattering (SAXS), WAXS, and X-ray microtomography. Across the investigated length scales, the upCNF foams exhibited a superior integrity compared to the wCNF foams, highlighting the potential of cotton waste textiles as a source of nanocellulose.

Multidirectional neutron dark-field tomography (MD-NDFT) has been demonstrated as a non-destructive and non-invasive method for advanced characterization of hierarchical materials. This was achieved by using the simple hierarchical structure of anisotropic CNC and CNF foams as model systems, where the alignment of nanoparticles in the full foams was revealed by MD-NDFT and cross-validated with SAXS on the nanometer scale. The dactyl club of the mantis shrimp was also measured, highlighting the potential of MD-NDFT for nature’s more complex hierarchical constructs.

Place, publisher, year, edition, pages
Stockholm: Department of Chemistry, Stockholm University, 2025. p. 54
Keywords
nanocellulose, cellulose-water interactions, neutron scattering, X-ray scattering, phonon transport, vibrational dynamics
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-241224 (URN)978-91-8107-178-8 (ISBN)978-91-8107-179-5 (ISBN)
Public defence
2025-05-09, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16B, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, GSn15-008
Available from: 2025-04-14 Created: 2025-03-24 Last updated: 2025-04-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Åhl, AgnesRuiz-Caldas, Maria-XimenaNocerino, ElisabettaMathew, Aji P.Bergström, Lennart

Search in DiVA

By author/editor
Åhl, AgnesRuiz-Caldas, Maria-XimenaNocerino, ElisabettaMathew, Aji P.Bergström, Lennart
By organisation
Department of Chemistry
In the same journal
Carbohydrate Polymers
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf