The ecological role, bloom extent and long-term dynamics of jellyfishes are mostly overlooked due to sampling limitations, leading to the lack of continuous long-term datasets. A rise in frequency and magnitude of jellyfish invasion around the world is shedding new light on these organisms. In this study, we estimate the current and future distribution of the introduced jellyfish Blackfordia virginica in the Baltic Sea. We determine the combination of favorable levels of temperature and salinity for this species by analyzing presence/absence data from areas outside the Baltic Sea and project the distribution of suitable habitat in the Baltic Sea across different scenarios with variable climate forcing and eutrophication levels. Our results show that suitability increases with rising temperature and optimal salinity range from 13 to 20 for this species. In addition, a relatively large area of the Baltic Sea represents favorable abiotic conditions for B. virginica, enhancing the concerns on its potential range expansion. Spatial analysis illustrates that the coastal areas of the southern Baltic Sea are particularly at risk for the invasion of the species. The observation of the projection of habitat suitability across time highlights that future Baltic Sea environmental conditions increase suitability levels for B. virginica and suggest a potential expansion of its distribution in the future.