Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A novel male accessory gland peptide reduces female post-mating receptivity in the brown planthopper
Stockholm University, Faculty of Science, Department of Zoology, Functional Morphology.ORCID iD: 0000-0002-1147-7766
Show others and affiliations
Number of Authors: 62025 (English)In: PLOS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 21, no 5, article id e1011699Article in journal (Refereed) Published
Abstract [en]

Mating in insects commonly induces a profound change in the physiology and behavior of the female that serves to secure numerous and viable offspring, and to ensure paternity for the male by reducing receptivity of the female to further mating attempts. Here, we set out to characterize the post-mating response (PMR) in a pest insect, the brown planthopper Nilaparvata lugens and to identify a functional analog of sex peptide and/or other seminal fluid factors that contribute to the PMR in Drosophila. We find that N. lugens display a distinct PMR that lasts for about 4 days and includes a change in female behavior with decreased receptivity to males and increased oviposition. Extract from male accessory glands (MAG) injected into virgin females triggers a similar PMR, lasting about 24h. Since sex peptide does not exist in N. lugens, we screened for candidate mediators by performing a transcriptional and proteomics analysis of MAG extract. We identified a novel 51 amino acid peptide present only in the MAG and not in female N. lugens. This peptide, that we designate maccessin (macc), affects the female PMR. Females mated by males with macc knockdown display receptivity to wild type males in a second mating, which does not occur in controls. However, oviposition is not affected. Injection of recombinant macc reduces female receptivity, with no effect on oviposition. Thus, macc is an important seminal fluid peptide that affects the PMR of N. lugens. Our analysis suggests that the gene encoding the macc precursor is restricted to species closely related to N. lugens.

Place, publisher, year, edition, pages
2025. Vol. 21, no 5, article id e1011699
National Category
Zoology
Identifiers
URN: urn:nbn:se:su:diva-243343DOI: 10.1371/journal.pgen.1011699ISI: 001482600000001Scopus ID: 2-s2.0-105004469002OAI: oai:DiVA.org:su-243343DiVA, id: diva2:1960164
Available from: 2025-05-22 Created: 2025-05-22 Last updated: 2025-05-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Nässel, Dick R.

Search in DiVA

By author/editor
Nässel, Dick R.
By organisation
Functional Morphology
In the same journal
PLOS Genetics
Zoology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 11 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf