CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt196",{id:"formSmash:upper:j_idt196",widgetVar:"widget_formSmash_upper_j_idt196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt197_j_idt199",{id:"formSmash:upper:j_idt197:j_idt199",widgetVar:"widget_formSmash_upper_j_idt197_j_idt199",target:"formSmash:upper:j_idt197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Information geometries in black hole physicsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Physics, Stockholm University , 2009. , p. xiv + 89
##### Keywords [en]

black holes, thermodynamics, instability, hessian, entropy, ruppeiner geometry, weinhold geometry, information geometry
##### National Category

Other Physics Topics
##### Research subject

Theoretical Physics
##### Identifiers

URN: urn:nbn:se:su:diva-29365ISBN: 978-91-7155-916-6 (print)OAI: oai:DiVA.org:su-29365DiVA, id: diva2:232738
##### Public defence

2009-09-21, sal FD41, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt517",{id:"formSmash:j_idt517",widgetVar:"widget_formSmash_j_idt517",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt523",{id:"formSmash:j_idt523",widgetVar:"widget_formSmash_j_idt523",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt529",{id:"formSmash:j_idt529",widgetVar:"widget_formSmash_j_idt529",multiple:true});
##### Projects

Geometry and Physics
##### Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted.
Available from: 2009-08-30 Created: 2009-08-25 Last updated: 2009-08-25Bibliographically approved
##### List of papers

In this thesis we aim to develop new perspectives on the statistical mechanics of black holes using an information geometric approach (Ruppeiner and Weinhold geometry). The Ruppeiner metric is defined as a Hessian matrix on a Gibbs surface, and provides a geometric description of thermodynamic systems in equilibrium. This Ruppeiner geometry exhibits physically suggestive features; a flat Ruppeiner metric for systems with no interactions i.e. the ideal gas, and curvature singularities signaling critical behavior(s) of the system. We construct a flatness theorem based on the scaling property of the black holes, which proves to be useful in many cases. Another thermodynamic geometry known as the Weinhold geometry is defined as the Hessian of internal energy and is conformally related to the Ruppeiner metric with the system’s temperature as a conformal factor.

We investigate a number of black hole families in various gravity theories. Our findings are briefly summarized as follows: the Reissner-Nordström type, the Einstein-Maxwell-dilaton andBTZ black holes have flat Ruppeiner metrics that can be represented by a unique state space diagram. We conjecture that the state space diagram encodes extremality properties of the black hole solution. The Kerr type black holes have curved Ruppeiner metrics whose curvature singularities are meaningful in five dimensions and higher, signifying the onset of thermodynamic instabilities of the black hole in higher dimensions. All the three-parameter black hole families in our study have non-flat Ruppeiner and Weinhold metrics and their associated curvature singularities occur in the extremal limits. We also study two-dimensional black hole families whose thermodynamic geometries are dependent on parameters that determine the thermodynamics of the black hole in question. The tidal charged black hole which arises in the braneworld gravity is studied. Despite its similarity to the Reissner-Nordström type, its thermodynamic geometries are distinctive.

1. Ruppeiner theory of black hole thermodynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay178981",{id:"formSmash:j_idt579:0:j_idt583",widgetVar:"overlay178981",target:"formSmash:j_idt579:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Thermodynamics of tidal charged black holes$(function(){PrimeFaces.cw("OverlayPanel","overlay232733",{id:"formSmash:j_idt579:1:j_idt583",widgetVar:"overlay232733",target:"formSmash:j_idt579:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Geometry of black hole thermodynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay232729",{id:"formSmash:j_idt579:2:j_idt583",widgetVar:"overlay232729",target:"formSmash:j_idt579:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. On Geometro-thermodynamics of dilaton black holes$(function(){PrimeFaces.cw("OverlayPanel","overlay232731",{id:"formSmash:j_idt579:3:j_idt583",widgetVar:"overlay232731",target:"formSmash:j_idt579:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Flat information geometries in black hole thermodynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay181722",{id:"formSmash:j_idt579:4:j_idt583",widgetVar:"overlay181722",target:"formSmash:j_idt579:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Geometry of higher-dimensional black hole thermodynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay179039",{id:"formSmash:j_idt579:5:j_idt583",widgetVar:"overlay179039",target:"formSmash:j_idt579:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1291",{id:"formSmash:j_idt1291",widgetVar:"widget_formSmash_j_idt1291",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1346",{id:"formSmash:lower:j_idt1346",widgetVar:"widget_formSmash_lower_j_idt1346",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1347_j_idt1349",{id:"formSmash:lower:j_idt1347:j_idt1349",widgetVar:"widget_formSmash_lower_j_idt1347_j_idt1349",target:"formSmash:lower:j_idt1347:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});