Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Small-scale magnetic helicity losses from a mean-field dynamo
Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi.ORCID-id: 0000-0002-7304-021X
Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi.
2009 (engelsk)Inngår i: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 398, nr 3, s. 1414-1422Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Using mean-field models with a dynamical quenching formalism, we show that in finite domains magnetic helicity fluxes associated with small-scale magnetic fields are able to alleviate catastrophic quenching. We consider fluxes that result from advection by a mean flow, the turbulent mixing down the gradient of mean small-scale magnetic helicity density or the explicit removal which may be associated with the effects of coronal mass ejections in the Sun. In the absence of shear, all the small-scale magnetic helicity fluxes are found to be equally strong for both large- and small-scale fields. In the presence of shear, there is also an additional magnetic helicity flux associated with the mean field, but this flux does not alleviate catastrophic quenching. Outside the dynamo-active region, there are neither sources nor sinks of magnetic helicity, so in a steady state this flux must be constant. It is shown that unphysical behaviour emerges if the small-scale magnetic helicity flux is forced to vanish within the computational domain.

sted, utgiver, år, opplag, sider
2009. Vol. 398, nr 3, s. 1414-1422
Emneord [en]
hydrodynamics, magnetic fields, MHD, turbulence
HSV kategori
Forskningsprogram
astronomi
Identifikatorer
URN: urn:nbn:se:su:diva-32536DOI: 10.1111/j.1365-2966.2009.15188.xISI: 000269731500030OAI: oai:DiVA.org:su-32536DiVA, id: diva2:280884
Tilgjengelig fra: 2009-12-12 Laget: 2009-12-12 Sist oppdatert: 2022-03-09bibliografisk kontrollert
Inngår i avhandling
1. Magnetic helicity in astrophysical dynamos
Åpne denne publikasjonen i ny fane eller vindu >>Magnetic helicity in astrophysical dynamos
2012 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The broad variety of ways in which magnetic helicity affects astrophysical systems, in particular dynamos, is discussed.

The so-called alpha effect is responsible for the growth of large-scale magnetic fields. The conservation of magnetic helicity, however, quenches the alpha effect, in particular for high magnetic Reynolds numbers. Predictions from mean-field theories state particular power law behavior of the saturation strength of the mean fields, which we confirm in direct numerical simulations. The loss of magnetic helicity in the form of fluxes can alleviate the quenching effect, which means that large-scale dynamo action is regained. Physically speaking, galactic winds or coronal mass ejections can have fundamental effects on the amplification of galactic and solar magnetic fields.

The gauge dependence of magnetic helicity is shown to play no effect in the steady state where the fluxes are represented in form of gauge-independent quantities. This we demonstrate in the Weyl-, resistive- and pseudo Lorentz-gauge. Magnetic helicity transport, however, is strongly affected by the gauge choice. For instance the advecto-resistive gauge is more efficient in transporting magnetic helicity into small scales, which results in a distinct spectrum compared to the resistive gauge.

The topological interpretation of helicity as linking of field lines is tested with respect to the realizability condition, which imposes a lower bound for the spectral magnetic energy in presence of magnetic helicity. It turns out that the actual linking does not affect the relaxation process, unlike the magnetic helicity content. Since magnetic helicity is not the only topological variable, I conduct a search for possible others, in particular for non-helical structures. From this search I conclude that helicity is most of the time the dominant restriction in field line relaxation. Nevertheless, not all numerical relaxation experiments can be described by the conservation of magnetic helicity alone, which allows for speculations about possible higher order topological invariants.

sted, utgiver, år, opplag, sider
Stockholm: Department of Astronomy, Stockholm University, 2012. s. 64
HSV kategori
Forskningsprogram
astronomi
Identifikatorer
urn:nbn:se:su:diva-81601 (URN)978-91-7447-593-7 (ISBN)
Disputas
2012-12-07, FD5, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:15 (engelsk)
Opponent
Veileder
Merknad

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 1: Submitted. 

Tilgjengelig fra: 2012-11-15 Laget: 2012-10-25 Sist oppdatert: 2022-02-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Brandenburg, AxelCandelaresi, Simon

Søk i DiVA

Av forfatter/redaktør
Brandenburg, AxelCandelaresi, Simon
Av organisasjonen
I samme tidsskrift
Monthly notices of the Royal Astronomical Society

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 87 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf