Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mrd1p Is Required for Release of Base-Paired U3 snoRNA within the Preribosomal Complex
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylärbiologi och funktionsgenomik.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylärbiologi och funktionsgenomik.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylärbiologi och funktionsgenomik.
Visa övriga samt affilieringar
2009 (Engelska)Ingår i: Molecular and Cellular Biology, ISSN 0270-7306, E-ISSN 1098-5549, Vol. 29, nr 21, s. 5763-5774Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In eukaryotes, ribosomes are made from precursor rRNA (pre-rRNA) and ribosomal proteins in a maturation process that requires a large number of snoRNPs and processing factors. A fundamental problem is how the coordinated and productive folding of the pre-rRNA and assembly of successive pre-rRNA-protein complexes is achieved cotranscriptionally. The conserved protein Mrd1p, which contains five RNA binding domains (RBDs), is essential for processing events leading to small ribosomal subunit synthesis. We show that full function of Mrd1p requires all five RBDs and that the RBDs are functionally distinct and needed during different steps in processing. Mrd1p mutations trap U3 snoRNA in pre-rRNP complexes both in base-paired and non-base-paired interactions. A single essential RBD, RBD5, is involved in both types of interactions, but its conserved RNP1 motif is not needed for releasing the base-paired interactions. RBD5 is also required for the late pre-rRNP compaction preceding A2 cleavage. Our results suggest that Mrd1p modulates successive conformational rearrangements within the pre-rRNP that influence snoRNA-pre-rRNA contacts and couple U3 snoRNA-pre-rRNA remodeling and late steps in pre-rRNP compaction that are essential for cleavage at A0 to A2. Mrd1p therefore coordinates key events in biosynthesis of small ribosome subunits.

Ort, förlag, år, upplaga, sidor
American Society for Microbiology , 2009. Vol. 29, nr 21, s. 5763-5774
Nationell ämneskategori
Biokemi och molekylärbiologi
Identifikatorer
URN: urn:nbn:se:su:diva-35367DOI: 10.1128/MCB.00428-09ISI: 000270716800012OAI: oai:DiVA.org:su-35367DiVA, id: diva2:287179
Tillgänglig från: 2010-01-18 Skapad: 2010-01-18 Senast uppdaterad: 2022-02-24Bibliografiskt granskad
Ingår i avhandling
1. Eukaryotic Ribosome Biogenesis: Focus on the function of the assembly factor Mrd1p
Öppna denna publikation i ny flik eller fönster >>Eukaryotic Ribosome Biogenesis: Focus on the function of the assembly factor Mrd1p
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The ribosome, the protein factory of the cell, is essential for all life forms. The ribosome is a large RNA-protein machine. It is built in a complex, multi-step process that involves a large number of accessory trans-acting factors and the synthesis consumes a considerable part of the cellular energy. The ribosomal RNA is transcribed as a large precursor rRNA (pre-rRNA) molecule that undergoes extensive processing during maturation, including chemical modifications, pre-rRNA cleavage events, pre-rRNA folding and assembly with ribosomal proteins. More than 200 non-ribosomal proteins and small nucleolar RNAs ensure a successful maturation of the two ribosomal subunits during a pathway that starts with coupled synthesis and processing of the pre-rRNA within the nucleolus. Processing continues through the nucleus and ends with the final maturation in the cytoplasm.

We have studied one of the eukaryotic ribosomal biogenesis proteins, Mrd1 to learn about its essential function in the pre-ribosome maturation process in the yeast, Saccharomyces cerevisiae. Mrd1 contains multiple RNA-binding domains and the protein and its modular design is conserved throughout eukarya. Evolution of Mrd1 is most likely coupled to a common eukaryotic way of producing ribosomes. Together with a large set of other factors, Mrd1 associates early with the nascent pre-rRNA and forms a 90S pre-ribosome that can be seen in Chromatin Miller spreads of active rRNA genes as large terminal knob structures on the growing pre-rRNA. In the absence of Mrd1, essential steps in pre-ribosome maturation cannot occur and small ribosomal subunits are not produced. We have demonstrated that Mrd1 interacts with the pre-rRNA in vivo at two specific sites within the 18S rRNA sequence, both located close in space to where the essential and universally conserved central pseudoknot of the small ribosomal subunit is formed. Furthermore, we have shown that Mrd1 influences the release of the U3 snoRNA from the pre-ribosome. U3 snoRNA is essential for synthesis of the small ribosomal subunit and is involved in pseudoknot formation. Our results show that Mrd1 is present within the pre-ribosome at a crucial location and that it is required for essential maturation steps. Based on our results, we hypothesize that Mrd1 modulates the pre-rRNA folding and assembly to assist pre-ribosome structures necessary for pseudoknot formation and early cleavages. This essential function is conserved in all eukaryotes. 

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Molecular Biology and Functional Genomics, Stockholm University, 2012. s. 83
Nyckelord
Ribosome biogenesis, nucleolus, pre-rRNA processing, RNA-binding proteins, Mrd1
Nationell ämneskategori
Biologiska vetenskaper
Forskningsämne
molekylärbiologi
Identifikatorer
urn:nbn:se:su:diva-75829 (URN)978-91-7447-509-8 (ISBN)
Disputation
2012-06-07, De Geersalen, Geovetenskapens hus, Svante Arrhenius väg 14, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

At the time of doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript. 

Tillgänglig från: 2012-05-10 Skapad: 2012-04-30 Senast uppdaterad: 2022-02-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Jupiter, SaraSegerstolpe, ÅsaWieslander, Lars

Sök vidare i DiVA

Av författaren/redaktören
Jupiter, SaraSegerstolpe, ÅsaWieslander, Lars
Av organisationen
Institutionen för molekylärbiologi och funktionsgenomik
I samma tidskrift
Molecular and Cellular Biology
Biokemi och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 180 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf