Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enantioselective Kinetic Resolution of p-Nitrophenyl 2-Phenylpropanoate by a Variant of Candida antarctica Lipase A Developed by Directed Evolution
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
2010 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 20, p. 7038-7042Article in journal (Refereed) Published
Abstract [en]

A variant of Candida antarctica lipase A (CalA) was developed for the hydrolysis of α-substituted p-nitrophenyl esters by directed evolution. The E values of this variant for 7 different esters was 45−276, which is a large improvement compared to 2−20 for the wild type. The broad substrate scope of this enzyme variant is of synthetic use, and hydrolysis of the tested substrates proceeded with an enantiomeric excess between 95−99%. A 30-fold increase in activity was also observed for most substrates. The developed enzyme variant shows (R)-selectivity, which is reversed compared to the wild type that is (S)-selective for most substrates.

Place, publisher, year, edition, pages
American Chemical Society , 2010. Vol. 132, no 20, p. 7038-7042
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-38337DOI: 10.1021/ja100593jOAI: oai:DiVA.org:su-38337DiVA, id: diva2:309802
Available from: 2010-04-08 Created: 2010-04-08 Last updated: 2022-02-24Bibliographically approved
In thesis
1. Theoretical modeling of metal- and enzyme catalyzed transformations
Open this publication in new window or tab >>Theoretical modeling of metal- and enzyme catalyzed transformations
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is focused on describing and predicting catalytic reactions. The major part of the work is based on density functional theory (DFT). In some cases where the size of the investigated system precluded the use of more accurate methods molecular dynamics was employed. In several cases the proposed mechanism was later tested in the laboratory. A few examples where the predictions were confirmed are:

  • The formation of an acyl intermediate in the activation of a ruthenium catalyst used for racemizing alcohols. This intermediate was observed by both NMR and in situ FT-IR.
  • The improvement of the substrate specificity and catalytic activity of Candida antarctica lipase A by modifying amino acids close to the active site.
  • The improved specificity of Candida antarctica lipase B toward δ-substituted secondary alcohols by an enzyme variant where the alanine in position 281 was exchanged for a serine.

In other cases experimental results were complemented with a theoretical investigation, for example:

  • The observed second order rate constant for a ruthenium based catalyst used for water oxidation was explained and a novel intramolecular mechanism based on a high valent ruthenium dimer was suggested.
  • The effects of electron withdrawing/donating axial ligands on the performance of ruthenium catalyzed water oxidation were addressed.
  • Mechanisms of H2 activation by Lewis acid/Lewis base adducts were rationalized. One example of the predictive power of computational chemistry is the mechanism of hydrogen uptake by phosphanylboranes; the potential energy barrier for the transition state could be predicted within a few kcal/mol based on the orbital energies of the starting material.
Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2010. p. 96
Keywords
density functinal theory, computational chemistry, directed evolution, enzyme, mechanistic studies, catalysis, ruthenium, hydrogen transfer, racemization, artificial photosynthesis, frustrated lewis pairs, hydrogen storage
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-38344 (URN)978-91-7447-063-5 (ISBN)
Public defence
2010-05-12, Magnelisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 3: Submitted. Paper 8: In press.Available from: 2010-04-20 Created: 2010-04-08 Last updated: 2022-02-24Bibliographically approved
2. Enantioselective biotransformations using engineered lipases from Candida antarctica
Open this publication in new window or tab >>Enantioselective biotransformations using engineered lipases from Candida antarctica
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Enzymes are attractive catalysts in organic synthesis since they are efficient, selective and environmentally friendly. A large number of enzyme-catalyzed transformations have been described in the literature. If no natural enzyme can carry out a desirable reaction, one possibility is to modify an existing enzyme by protein engineering and thereby obtain a catalyst with the desired properties. In this thesis, the development of enantioselective enzymes and their use in synthetic applications is described. 

In the first part of this thesis, enantioselective variants of Candida antarctica lipase A (CALA) towards α-substituted p-nitrophenyl esters were developed by directed evolution. A highly selective variant of CALA towards p-nitrophenyl 2-phenylpropanoate was developed by pairwise randomization of amino acid residues close to the active site. The E value of this variant was 276 compared to 3 for the wild type.

An approach where nine residues were altered simultaneously was used to discover another highly enantioselective CALA variant (E = 100) towards an ibuprofen ester. The sterical demands of this substrate made it necessary to vary several residues at the same time in order to reach a variant with improved properties.

In the second part of the thesis, a designed variant of Candida antarctica lipase B (CALB) was employed in kinetic resolution (KR) and dynamic kinetic resolution (DKR) of secondary alcohols. The designed CALB variant (W104A) accepts larger substrates compared to the wild type, and by the application of CALB W104A, the scope of these resolutions was extended.

First, a DKR of phenylalkanols was developed using CALB W104A. An enzymatic resolution was combined with in situ racemization of the substrate, to yield the products in up to 97% ee. Secondly, the KR of diarylmethanols with CALB W104A was developed. By the use of diarylmethanols with two different aryl groups, highly enantioselective transformations were achieved.

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2012. p. 55
Keywords
protein engineering, directed evolution, kinetic resolution, dynamic kinetic resolution, biotransformation, lipase
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-75000 (URN)978-91-7447-468-8 (ISBN)
Public defence
2012-05-11, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows:  Paper 5: Submitted.

Available from: 2012-04-19 Created: 2012-04-02 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Engström, KarinNyhlén, JonasSandström, Anders G.Bäckvall, Jan-Erling

Search in DiVA

By author/editor
Engström, KarinNyhlén, JonasSandström, Anders G.Bäckvall, Jan-Erling
By organisation
Department of Organic Chemistry
In the same journal
Journal of the American Chemical Society
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 338 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf