Open this publication in new window or tab >>Show others...
2002 (English)In: Inorganica Chimica Acta, ISSN 0020-1693, E-ISSN 1873-3255, Vol. 331, no 1, p. 65-72Article in journal (Refereed) Published
Abstract [en]
The rates of reduction of the diferric/radical center in mouse ribonucleotide reductase protein R2 were studied by light absorption and EPR in the native protein and in three point mutants of conserved residues involved in the proposed radical transfer pathway (D266A, W103Y) or in the unstructured C terminal domain (Y370W). The pseudo-first order rate constants for chemical reduction of the tyrosyl radical and diferric center by hydroxyurea, sodium dithionite or the dihydro form of flavin adenine dinucleotide, were comparable with or higher (particularly D266A, by dithionite) than in native R2. Molecular modeling of the D266A mutant showed that the iron/radical site should be more accessible for external reductants in the mutant than in native R2. The results indicate that no specific pathway is required for the reduction. The dihydro form of flavin adenine dinucleotide was found to be a very efficient reductant in the studied proteins compared to dithionite alone. The EPR spectra of the mixed-valent Fe(II)Fe(III) sites formed by chemical reduction in the D266A and W103Y mutants were clearly different from the spectrum observed in the native protein, indicating that the structure of the diferric site was affected by the mutations, as also suggested by the modeling study. No difference was observed between the mixed-valent EPR spectra generated by chemical reduction in Y370W mutant and native mouse R2 protein
Keywords
Ribonucleotide reductase; Tyrosyl radical reduction; Diiron–oxygen protein
Identifiers
urn:nbn:se:su:diva-39039 (URN)10.1016/S0020-1693(01)00750-2 (DOI)
2010-05-062010-05-062022-02-24Bibliographically approved