Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Metal valence states in Eu0.7NbO3, EuNbO3, and Eu2Nb5O9 by TB-LMTO-ASA band-structure calculations and resonant photoemission spectroscopy
Show others and affiliations
1998 (English)In: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 57, p. 1510-1514Article in journal (Refereed) Published
Abstract [en]

The electronic structures of Eu2Nb5O9, EuNbO3, and Eu0.7NbO3 have been investigated by photoemission and total-yield spectroscopy with synchrotron radiation, and in the case of Eu2Nb5O9 by tight-binding linear muffin-tin orbital (LMTO) band-structure calculations. A central question for reduced europium niobates is that of the valence of Eu and Nb. Both europium and niobium atoms can appear in different valence states so that various electronic configurations in the title compounds are possible. For this reason, the valence band was studied by the resonant Eu 4d⃗4f technique to determine the Eu valence. The final-state 4f6 multiplet of divalent Eu is dominant in all spectra. Since there are no 4f density of states at the Fermi level, valence fluctuations are not expected. The niobium valence states were investigated by core-level spectroscopy. We found only one 3d5/23d3/2 doublet for the Nb 3d core level in EuNbO3 and Eu0.7NbO3, while in Eu2Nb5O9, two 3d doublets have been observed, corresponding to two chemically distinct niobium atoms in this compound. The 3d5/2 peak in EuNbO3 is assigned to the +4 nominal valence state at a binding energy of 209.7 eV. The doublet of Eu0.7NbO3 is observed at 0.5 eV higher binding energy (at 210.2 eV), which then corresponds to a nominal Nb+4+δ chemical state. In Eu2Nb5O9, the valence of Nb in the NbO6 octahedra is less than +5 and in the Nb6O12 clusters is close to +2 as expected. This is in accordance with the LMTO band-structure calculations

Place, publisher, year, edition, pages
1998. Vol. 57, p. 1510-1514
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-43891DOI: 10.1103/PhysRevB.57.1510OAI: oai:DiVA.org:su-43891DiVA, id: diva2:371124
Available from: 2010-11-18 Created: 2010-10-29 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Svensson, Gunnar

Search in DiVA

By author/editor
Svensson, Gunnar
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Physical Review B Condensed Matter
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 141 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf