Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Impact of flow-dependent horizontal diffusion on resolved convectionin AROME.
Sveriges meteorologiska och hydrologiska institut (SMHI), Norrköping.
Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
2012 (engelsk)Inngår i: Journal of Applied Meteorology and Climatology, ISSN 1558-8424, E-ISSN 1558-8432, Vol. 51, nr 1, s. 54-67Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Horizontal diffusion in numerical weather prediction models is, in general, applied to reduce numerical noise at the smallest atmospheric scales. In convection-permittingmodels, with horizontal grid spacing on the order of 1–3 km, horizontal diffusion can improve themodel skill of physical parameters such as convective precipitation. For instance, studies using the convection-permitting Applications of Research to Operations at Mesoscale model (AROME) have shown an improvement in forecasts of large precipitation amounts when horizontal diffusion is applied to falling hydrometeors. The nonphysical nature of such a procedure is undesirable, however. Within the current AROME, horizontal diffusion is imposed using linear spectral horizontal diffusion on dynamicalmodel fields. This spectral diffusion is complemented by nonlinear, flow-dependent, horizontal diffusion applied on turbulent kinetic energy, cloud water, cloud ice, rain, snow, and graupel. In this study, nonlinear flowdependent diffusion is applied to the dynamical model fields rather than diffusing the already predicted falling hydrometeors. In particular, the characteristics of deep convection are investigated. Results indicate that, for the same amount of diffusive damping, the maximum convective updrafts remain strong for both the current and proposed methods of horizontal diffusion. Diffusing the falling hydrometeors is necessary to see a reduction in rain intensity, but amore physically justified solution can be obtained by increasing the amount of damping on the smallest atmospheric scales using the nonlinear, flow-dependent, diffusion scheme. In doing so, a reduction in vertical velocity was found, resulting in a reduction in maximum rain intensity.

sted, utgiver, år, opplag, sider
2012. Vol. 51, nr 1, s. 54-67
HSV kategori
Forskningsprogram
atmosfärvetenskap och oceanografi
Identifikatorer
URN: urn:nbn:se:su:diva-75188DOI: 10.1175/JAMC-D-11-032.1ISI: 000299395100005OAI: oai:DiVA.org:su-75188DiVA, id: diva2:514967
Tilgjengelig fra: 2012-04-11 Laget: 2012-04-11 Sist oppdatert: 2017-12-07bibliografisk kontrollert
Inngår i avhandling
1. On the Convective-Scale Predictability of the Atmosphere
Åpne denne publikasjonen i ny fane eller vindu >>On the Convective-Scale Predictability of the Atmosphere
2012 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

A well-represented description of convection in weather and climate models is essential since convective clouds strongly influence the climate system. Convective processes interact with radiation, redistribute sensible and latent heat and momentum, and impact hydrological processes through precipitation. Depending on the models’ horizontal resolution, the representation of convection may look very different. However, the convective scales not resolved by the model are traditionally parameterized by an ensemble of non-interacting convective plumes within some area of uniform forcing, representing the “large scale”. A bulk representation of the mass-flux associated with the individual plumes in the defined area provide the statistical effect of moist convection on the atmosphere. Studying the characteristics of the ECMWF ensemble prediction system it is found that the control forecast of the ensemble system is not variable enough in order to yield a sufficient spread using an initial perturbation technique alone. Such insufficient variability may be addressed in the parameterizations of, for instance, cumulus convection where the sub-grid variability in space and time is traditionally neglected. Furthermore, horizontal transport due to gravity waves can act to organize deep convection into larger scale structures which can contribute to an upscale energy cascade. However, horizontal advection and numerical diffusion are the only ways through which adjacent model grid-boxes interact in the models. The impact of flow dependent horizontal diffusion on resolved deep convection is studied, and the organization of convective clusters is found very sensitive to the method of imposing horizontal diffusion. However, using numerical diffusion in order to represent lateral effects is undesirable. To address the above issues, a scheme using cellular automata in order to introduce lateral communication, memory and a stochastic representation of the statistical effects of cumulus convection is implemented in two numerical weather models. The behaviour of the scheme is studied in cases of organized convective squall-lines, and initial model runs show promising improvements.

sted, utgiver, år, opplag, sider
Stockholm: Department of Meteorology, Stockholm University, 2012. s. 45
Emneord
Cumulus convection, cellular automata, model uncertainty, sub-grid scale processes, numerical weather prediction
HSV kategori
Forskningsprogram
atmosfärvetenskap och oceanografi
Identifikatorer
urn:nbn:se:su:diva-75195 (URN)978-91-7447-494-7 (ISBN)
Disputas
2012-05-25, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Submitted. 

Tilgjengelig fra: 2012-05-03 Laget: 2012-04-11 Sist oppdatert: 2013-04-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Svensson, Gunilla
Av organisasjonen
I samme tidsskrift
Journal of Applied Meteorology and Climatology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 120 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf