Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Kinetic resolution of diarylmethanols using a mutated variant of lipase CALB
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
2012 (English)In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 68, no 37, p. 7613-7618Article in journal (Refereed) Published
Abstract [en]

An enzymatic kinetic resolution of diarylmethanols via acylation has been developed. This was achieved by the use of a mutated variant of CALB that accepts larger substrates compared to the wild type. By the use of diarylmethanols with two differently sized aryl groups, enantioselective transformations were achieved. A larger size-difference led to a higher enantioselectivity. In addition, substrates with electronically different aryl groups, such as phenyl and pyridyl, also gave an enantioselective reaction. The highest E value was observed with a substrate where steric and electronic effects were combined.

Place, publisher, year, edition, pages
2012. Vol. 68, no 37, p. 7613-7618
Keywords [en]
Kinetic resolution, Diarylmethanols, Biotransformation, Candida antarctica lipase B, Enzymatic resolution
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-81263DOI: 10.1016/j.tet.2012.06.040ISI: 000307802300013OAI: oai:DiVA.org:su-81263DiVA, id: diva2:560575
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Note

AuthorCount:4;

Available from: 2012-10-15 Created: 2012-10-15 Last updated: 2022-02-24Bibliographically approved
In thesis
1. Enantioselective biotransformations using engineered lipases from Candida antarctica
Open this publication in new window or tab >>Enantioselective biotransformations using engineered lipases from Candida antarctica
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Enzymes are attractive catalysts in organic synthesis since they are efficient, selective and environmentally friendly. A large number of enzyme-catalyzed transformations have been described in the literature. If no natural enzyme can carry out a desirable reaction, one possibility is to modify an existing enzyme by protein engineering and thereby obtain a catalyst with the desired properties. In this thesis, the development of enantioselective enzymes and their use in synthetic applications is described. 

In the first part of this thesis, enantioselective variants of Candida antarctica lipase A (CALA) towards α-substituted p-nitrophenyl esters were developed by directed evolution. A highly selective variant of CALA towards p-nitrophenyl 2-phenylpropanoate was developed by pairwise randomization of amino acid residues close to the active site. The E value of this variant was 276 compared to 3 for the wild type.

An approach where nine residues were altered simultaneously was used to discover another highly enantioselective CALA variant (E = 100) towards an ibuprofen ester. The sterical demands of this substrate made it necessary to vary several residues at the same time in order to reach a variant with improved properties.

In the second part of the thesis, a designed variant of Candida antarctica lipase B (CALB) was employed in kinetic resolution (KR) and dynamic kinetic resolution (DKR) of secondary alcohols. The designed CALB variant (W104A) accepts larger substrates compared to the wild type, and by the application of CALB W104A, the scope of these resolutions was extended.

First, a DKR of phenylalkanols was developed using CALB W104A. An enzymatic resolution was combined with in situ racemization of the substrate, to yield the products in up to 97% ee. Secondly, the KR of diarylmethanols with CALB W104A was developed. By the use of diarylmethanols with two different aryl groups, highly enantioselective transformations were achieved.

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2012. p. 55
Keywords
protein engineering, directed evolution, kinetic resolution, dynamic kinetic resolution, biotransformation, lipase
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-75000 (URN)978-91-7447-468-8 (ISBN)
Public defence
2012-05-11, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows:  Paper 5: Submitted.

Available from: 2012-04-19 Created: 2012-04-02 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Engström, KarinBäckvall, Jan-E.

Search in DiVA

By author/editor
Engström, KarinBäckvall, Jan-E.
By organisation
Department of Organic Chemistry
In the same journal
Tetrahedron
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 171 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf