Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bayesian Distributed Detection by Sensor Networks with Missing Data
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
Visa övriga samt affilieringar
2012 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

We consider detection and identication of a moving target, using a network of sensors. The target emits a signal; a stationary stochastic process corrupted by additive noise, independently across sensors. Before intersensor communication, all sensors reduce external data as energy over disjoint frequency bands and time blocks. One sensor, the internal fusion center (IFC), gathers feature vectors from the other sensors, possibly after message passing. Using Bayesian decision theory, it decides for presence or absence of the target and computes a maximum posterior estimate of target (trajectory and spectral) parameters. The main novelties of the paper are: 1) To apply statistical theory of missing data to an inter-sensor communication protocol which censors weak signals before transmission and an imperfect channel in which some transmitted signals are lost. A Naive Bayes approximate detector is dened, which requires recursive computation of reception probabilities. 2) To derive asymptotic approximations of the distribution of the spectral feature vectors and a Laplace type approximation of the detector. The performance of the proposed Bayesian detector is shown in a simulation study to be only slightly inferior to that of an ideal Bayesian detector (with no missing data), as well as superior to a naive detector.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Mathematics, Stockholm University , 2012. , s. 37
Serie
Research report / Mathematical Statistics, ISSN 1650-0377 ; 2012:6
Nyckelord [en]
Bayesian detection, data reduction, distributed detection, internal fusion center, missing data, routing, periodogram, sensor network
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:su:diva-84391OAI: oai:DiVA.org:su-84391DiVA, id: diva2:580092
Tillgänglig från: 2012-12-20 Skapad: 2012-12-20 Senast uppdaterad: 2022-02-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Hössjer, Ola

Sök vidare i DiVA

Av författaren/redaktören
Hössjer, Ola
Av organisationen
Matematiska institutionen
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 38 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf