Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An algorithm for computing the topological Euler characteristic of complex projective varieties
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We present an algorithm for the symbolic and numerical computation of the degrees of the Chern-Schwartz-MacPherson classes of a closed subvariety of projective space P^n. As the degree of the top Chern-Schwartz-MacPherson class is the topological Euler characteristic, this also yields a method to compute the topological Euler characteristic of projective varieties. The method is based on Aluffi's symbolic algorithm to compute degrees of Chern-Schwartz-MacPherson classes, a symbolic method to compute degrees of Segre classes, and the regenerative cascade by Hauenstein, Sommese and Wampler. The new algorithm complements the existing algorithms. We also give an example for using a theorem by Huh to compute an invariant from algebraic statistics, the maximum likelihood degree of an implicit model.

Nationell ämneskategori
Geometri
Forskningsämne
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-87357OAI: oai:DiVA.org:su-87357DiVA, id: diva2:602960
Tillgänglig från: 2013-02-04 Skapad: 2013-02-04 Senast uppdaterad: 2022-02-24Bibliografiskt granskad
Ingår i avhandling
1. Topics in Computational Algebraic Geometry and Deformation Quantization
Öppna denna publikation i ny flik eller fönster >>Topics in Computational Algebraic Geometry and Deformation Quantization
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis consists of two parts, a first part on computations in algebraic geometry, and a second part on deformation quantization. More specifically, it is a collection of four papers. In the papers I, II and III, we present algorithms and an implementation for the computation of degrees of characteristic classes in algebraic geometry. Paper IV is a contribution to the field of deformation quantization and actions of the Grothendieck-Teichmüller group.

In Paper I, we present an algorithm for the computation of degrees of Segre classes of closed subschemes of complex projective space. The algorithm is based on the residual intersection theorem and can be implemented both symbolically and numerically.

In Paper II, we describe an algorithm for the computation of the degrees of Chern-Schwartz-MacPherson classes and the topological Euler characteristic of closed subschemes of complex projective space, provided an algorithm for the computation of degrees of Segre classes. We also explain in detail how the algorithm in Paper I can be implemented numerically. Together this yields a symbolical and a numerical version of the algorithm.

Paper III describes the Macaulay2 package CharacteristicClasses. It implements the algorithms from papers I and II, as well as an algorithm for the computation of degrees of Chern classes.

In Paper IV, we show that L-infinity-automorphisms of the Schouten algebra T_poly(R^d) of polyvector fields on affine space R^d which satisfy certain conditions can be globalized. This means that from a given L-infinity-automorphism of T_poly(R^d) an L-infinity-automorphism of T_poly(M) can be constructed, for a general smooth manifold M. It follows that Willwacher's action of the Grothendieck-Teichmüller group on T_poly(R^d) can be globalized, i.e., the Grothendieck-Teichmüller group acts on the Schouten algebra T_poly(M) of polyvector fields on a general manifold M.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Mathematics, Stockholm University, 2013. s. 20
Nyckelord
Segre classes, Chern-Schwartz-MacPherson classes, topological Euler characteristic, computational algebraic geometry, numerical algebraic geometry, numerical homotopy methods, deformation quantization, polyvector fields, Fedosov quantization, Grothendieck-Teichmüller group
Nationell ämneskategori
Geometri
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:su:diva-87399 (URN)978-91-7447-623-1 (ISBN)
Disputation
2013-03-11, room 14, house 5, Kräftriket, Roslagsvägen 101, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Anmärkning

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Accepted.

Tillgänglig från: 2013-02-14 Skapad: 2013-02-05 Senast uppdaterad: 2022-02-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Jost, Christine

Sök vidare i DiVA

Av författaren/redaktören
Jost, Christine
Av organisationen
Matematiska institutionen
Geometri

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 173 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf