Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A two-domain elevator mechanism for sodium/proton antiport
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 501, nr 7468, s. 573-577Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets(2). The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli(1,3), for which both electron microscopy and crystal structures are available(4-6). NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein(1,4). Likemany Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur(7). The only reported NhaA crystal structure so far is of the low pH inactivated form(4). Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 angstrom resolution, solved from crystals grown at pH7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding(1,8,9) directly, a role supported hereby molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20 degrees against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second(3), Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general.

Ort, förlag, år, upplaga, sidor
2013. Vol. 501, nr 7468, s. 573-577
Nationell ämneskategori
Biologiska vetenskaper
Forskningsämne
biokemi
Identifikatorer
URN: urn:nbn:se:su:diva-95768DOI: 10.1038/nature12484ISI: 000324826300064OAI: oai:DiVA.org:su-95768DiVA, id: diva2:661763
Anmärkning

AuthorCount:10;

Tillgänglig från: 2013-11-04 Skapad: 2013-11-04 Senast uppdaterad: 2022-02-24Bibliografiskt granskad
Ingår i avhandling
1. Establishing the molecular mechanism of sodium/proton exchangers
Öppna denna publikation i ny flik eller fönster >>Establishing the molecular mechanism of sodium/proton exchangers
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Sodium/proton exchangers are ubiquitous secondary active transporters that can be found in all kingdoms of life. These proteins facilitate the transport of protons in exchange for sodium ions to help regulate internal pH, sodium levels, and cell volume. Na+/H+ exchangers belong to the SLC9 family and are involved in many physiological processes including cell proliferation, cell migration and vesicle trafficking. Dysfunction of these proteins has been linked to physiological disorders, such as hypertension, heart failure, epilepsy and diabetes.

The goal of my thesis is to establish the molecular basis of ion exchange in Na+/H+ exchangers. By establishing how they bind and catalyse the movement of ions across the membrane, we hope we can better understand their role in human physiology.

In my thesis, I will first present an overview of Na+/H+ exchangers and their molecular mechanism of ion translocation as was currently understood by structural and functional studies when I started my PhD studies. I will outline our important contributions to this field, which were to (i) obtain the first atomic structures of the same Na+/H+ exchanger (NapA) in two major alternating conformations, (ii) show how a transmembrane embedded lysine residue is essential for carrying out electrogenic transport, and (iii) isolate and recorde the first kinetic data of a mammalian Na+/H+ exchanger (NHA2) in an isolated liposome reconstitution system.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2017. s. 47
Nyckelord
membrane protein, secondary active transporters, sodium/proton exchangers, proton transport, structure, energetics
Nationell ämneskategori
Biokemi och molekylärbiologi Strukturbiologi
Forskningsämne
biokemi
Identifikatorer
urn:nbn:se:su:diva-147333 (URN)978-91-7649-964-1 (ISBN)978-91-7649-965-8 (ISBN)
Disputation
2017-11-14, William-Olssonsalen, Geovetenskapens hus, Svante Arrhenius väg 14, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-10-20 Skapad: 2017-09-22 Senast uppdaterad: 2022-02-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

von Ballmoos, ChristophUzdavinys, PovilasDrew, David

Sök vidare i DiVA

Av författaren/redaktören
von Ballmoos, ChristophUzdavinys, PovilasDrew, David
Av organisationen
Institutionen för biokemi och biofysik
I samma tidskrift
Nature
Biologiska vetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 108 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf