Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Generation and Assessment of Urban Land Cover Maps Using High-Resolution Multispectral Aerial Cameras
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.ORCID-id: 0000-0002-0423-6702
Aalborg University.
2013 (engelsk)Inngår i: International Journal On Advances in Software, ISSN 1942-2628, E-ISSN 1942-2628, Vol. 6, nr 3-4, s. 272-282Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

New aerial cameras and new advanced geoprocessingtools improve the generation of urban land covermaps. Elevations can be derived from stereo pairs with highdensity, positional accuracy, and efficiency. The combinationof multispectral high-resolution imagery and high-densityelevations enable a unique method for the automaticgeneration of urban land cover maps. In the present paper,imagery of a new medium-format aerial camera and advancedgeoprocessing software are applied to derive normalizeddigital surface models and vegetation maps. These twointermediate products then become input to a tree structuredclassifier, which automatically derives land cover maps in 2Dor 3D. We investigate the thematic accuracy of the producedland cover map by a class-wise stratified design and provide amethod for deriving necessary sample sizes. Correspondingsurvey adjusted accuracy measures and their associatedconfidence intervals are used to adequately reflect uncertaintyin the assessment based on the chosen sample size. Proof ofconcept for the method is given for an urban area inSwitzerland. Here, the produced land cover map with sixclasses (building, wall and carport, road and parking lot, hedgeand bush, grass) has an overall accuracy of 86% (95%confidence interval: 83-88%) and a kappa coefficient of 0.82(95% confidence interval: 0.78-0.85). The classification ofbuildings is correct with 99% and of road and parking lot with95%. To possibly improve the classification further,classification tree learning based on recursive partitioning isinvestigated. We conclude that the open source software “R”provides all the tools needed for performing statistical prudentclassification and accuracy evaluations of urban land covermaps.

sted, utgiver, år, opplag, sider
2013. Vol. 6, nr 3-4, s. 272-282
Emneord [en]
land cover map; classification; assessment; thematic accuracy; multispectral camera; map revision
HSV kategori
Forskningsprogram
statistik
Identifikatorer
URN: urn:nbn:se:su:diva-99513OAI: oai:DiVA.org:su-99513DiVA, id: diva2:687143
Tilgjengelig fra: 2014-01-13 Laget: 2014-01-13 Sist oppdatert: 2017-12-06bibliografisk kontrollert

Open Access i DiVA

fulltext(689 kB)164 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 689 kBChecksum SHA-512
f8d7e55db461de70710c59718a0b7829462112f48da773c592493921cd225a823784daf9f3187d747ca04fbb7d7f3e85ed21a21261f13c9953d5334a29af42ab
Type fulltextMimetype application/pdf

Andre lenker

http://www.iariajournals.org/software/soft_v6_n34_2013_paged.pdf

Søk i DiVA

Av forfatter/redaktør
Höhle, Michael
Av organisasjonen
I samme tidsskrift
International Journal On Advances in Software

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 164 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 143 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf