Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bayesian parameter inference for dynamic infectious disease modelling: Rotavirus in Germany
Vise andre og tillknytning
2014 (engelsk)Inngår i: Statistics in Medicine, ISSN 0277-6715, E-ISSN 1097-0258, Vol. 33, nr 9, s. 1580-1599Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Understanding infectious disease dynamics using epidemic models based on ordinary differential equations requires the calibration of model parameters from data. A commonly used approach in practice to simplify this task is to fix many parameters on the basis of expert or literature information. However, this not only leaves the corresponding uncertainty unexamined but often also leads to biased inference for the remaining parameters because of dependence structures inherent in any given model. In the present work, we develop a Bayesian inference framework that lessens the reliance on such external parameter quantifications by pursuing a more data-driven calibration approach. This includes a novel focus on residual autocorrelation combined with model averaging techniques in order to reduce these estimates’ dependence on the underlying model structure. We applied our methods to the modelling of age-stratified weekly rotavirus incidence data in Germany from 2001 to 2008 using a complex susceptible–infectious–susceptible-type model complemented by the stochastic reporting of new cases. As a result, we found the detection rate in the eastern federal states to be more than four times higher compared with that of the western federal states (19.0% vs 4.3%), and also the infectiousness of symptomatically infected individuals was estimated to be more than 10 times higher than that of asymptomatically infected individuals (95% credibility interval: 8.1–19.6). Not only do these findings give valuable epidemiological insight into the transmission processes, we were also able to  examine the considerable impact on the model-predicted transmission dynamics when fixing parameters beforehand.

sted, utgiver, år, opplag, sider
2014. Vol. 33, nr 9, s. 1580-1599
Emneord [en]
Bayesian inference, disease transmission, ordinary differential equations, model averaging, residual autocorrelation, rotavirus
HSV kategori
Forskningsprogram
statistik
Identifikatorer
URN: urn:nbn:se:su:diva-99517DOI: 10.1002/sim.6041ISI: 000333744000010OAI: oai:DiVA.org:su-99517DiVA, id: diva2:687150
Tilgjengelig fra: 2014-01-13 Laget: 2014-01-13 Sist oppdatert: 2017-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Höhle, Michael
Av organisasjonen
I samme tidsskrift
Statistics in Medicine

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 31 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf