Open this publication in new window or tab >>2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
This thesis is based on theoretical studies of the molecular and electronic structure of solvated ions and molecules. Very detailed information of the system can be obtained from theoretical calculations, but a realistic model is dependent on an accurate computational method. Accurate calculations of core level electronic spectra, and evaluation of the modeling against experiments, are central parts of this work. The main tools used for characterization of the systems are high-level quantum chemistry and molecular dynamics simulations.
Molecular components in solutions are involved in many key processes converting sunlight into chemical or electrical energy. Transition metal complexes, with their pronounced absorption in the visible light region of the electromagnetic spectrum, are core components in various energy conversion applications, and the iodide/triiodide redox couple is a commonly used electrolyte. The local structure of the electronic valence in transition metal complexes and the details of the solvation mechanisms of electrolyte solutions are investigated through the combination of computational modeling and core level spectroscopy. The studies of model systems show that interactions between the solute and solvent are important for the electronic structure, and knowledge of the details in model systems studied can be relevant for energy conversion applications. Furthermore, high-level quantum chemistry has been applied for interpreting time-resolved spectra, where the electronic structure of a metal complex is followed during a photoinduced chemical reaction in solution.
With advanced modeling in combination with recent experimental developments, more complex problems than previously addressed can be dissected.
Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2015. p. 64
Keywords
quantum chemistry, RASSCF, molecular dynamics, x-ray spectroscopy, electrolyte solutions
National Category
Physical Sciences
Research subject
Physics
Identifiers
urn:nbn:se:su:diva-119838 (URN)978-91-7649-258-1 (ISBN)
Public defence
2015-10-15, sal FB42, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 8: Manuscript.
2015-09-232015-08-262022-02-23Bibliographically approved