Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
RECOVERY OF THE CANDIDATE PROTOPLANET HD 100546 b WITH GEMINI/NICI AND DETECTION OF ADDITIONAL (PLANET-INDUCED ?) DISK STRUCTURE AT SMALL SEPARATIONS
Show others and affiliations
2014 (English)In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 796, no 2, p. L30-Article in journal (Refereed) Published
Abstract [en]

We report the first independent, second epoch (re-) detection of a directly imaged protoplanet candidate. Using L' high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager on Gemini South, we recover HD 100546 b with a position and brightness consistent with the original Very Large Telescope/NAos-COnica detection from Quanz et al., although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to approximate to 12-13 AU in diameter, and is embedded in a finger of thermal IR-bright, polarized emission extending inward to at least 0 ''.3. Standard hot-start models imply a mass of approximate to 15 M-J. However, if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g., 1-7 M-J). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90 degrees. away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to approximate to 0 ''.45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen, wide-separation planet. With one confirmed protoplanet candidate and evidence for one to two others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-Jovian planets at moderate/wide separations like HR 8799.

Place, publisher, year, edition, pages
2014. Vol. 796, no 2, p. L30-
Keywords [en]
planetary systems, stars: early-type, stars: individual (HD 100546)
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-111416DOI: 10.1088/2041-8205/796/2/L30ISI: 000345503400009OAI: oai:DiVA.org:su-111416DiVA, id: diva2:775750
Note

AuthorCount:26;

Available from: 2015-01-05 Created: 2015-01-02 Last updated: 2022-02-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Janson, Markus

Search in DiVA

By author/editor
Janson, Markus
By organisation
Department of Astronomy
In the same journal
Astrophysical Journal Letters
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf