Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pathways for degradation of plastic polymers floating in the marine environment
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.ORCID-id: 0000-0003-2562-7339
Antal upphovsmän: 32015 (Engelska)Ingår i: Environmental Science: Processes & Impacts, ISSN 2050-7887, E-ISSN 2050-7895, Vol. 17, nr 9, s. 1513-1521Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids.

Ort, förlag, år, upplaga, sidor
2015. Vol. 17, nr 9, s. 1513-1521
Nationell ämneskategori
Kemi Geovetenskap och miljövetenskap
Forskningsämne
tillämpad miljövetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-121702DOI: 10.1039/c5em00207aISI: 000361146500001OAI: oai:DiVA.org:su-121702DiVA, id: diva2:860869
Tillgänglig från: 2015-10-14 Skapad: 2015-10-13 Senast uppdaterad: 2020-02-06Bibliografiskt granskad
Ingår i avhandling
1. Chemical Pollutants Released to the Marine Environment by Degradation of Plastic Debris
Öppna denna publikation i ny flik eller fönster >>Chemical Pollutants Released to the Marine Environment by Degradation of Plastic Debris
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Since the beginning of the mass production in the 1940s, plastic has been manufactured in quickly increasing amounts. Plastic debris accumulates in the environment and lately much attention has been drawn to the pollution in the world’s oceans. Despite the rapid development and ubiquitous presence of plastic, degradation in the marine environment and potential risks associated with plastic are not fully understood. Thus, these knowledge gaps were addressed in this thesis, which adds information about exposure and hazards of marine plastic debris.

Although sampling studies have been conducted all over the world, the concentrations of plastic debris in the Baltic Sea have hardly been investigated. In Paper I, the level and distribution of plastic debris in the Stockholm Archipelago were assessed. Plastic concentrations were higher close to suspected point sources compared to remote areas. Fibers accounted for the most common form and the predominant polymer types were polypropylene (PP) and polyethylene (PE).

In Paper II, the literature was critically reviewed for the most important degradation pathways for plastic under environmentally relevant conditions. Ultraviolet (UV) radiation, leading to photo-oxidation, is the most important initiating factor for buoyant plastic. Consequently, a UV lamp was used in Paper III for an artificial weathering setup in the laboratory to degrade pristine plastics and analyze the chemical leachates by liquid chromatography-mass spectrometry (LC-MS) for degradation products using a nontarget approach. Carboxylic acids and dicarboxylic acids of polymer fragments were the most commonly identified degradation products of the plastic polymers, confirming predictions made in Paper II.

To evaluate potential hazards posed by leachates from weathering plastic debris to marine organisms, an acute toxicity screening study with Nitocra spinipes was conducted in Paper IV. Field-exposed plastic and the corresponding newly purchased plastic were artificially aged with the same weathering setup as in Paper III. Poly(vinyl chloride) (PVC) and PP leachates were generally most toxic, while leachates from polystyrene (PS) and poly(ethylene terephthalate) (PET) were least toxic among the tested materials. For plastics, which were supposed to contain only few additives, we observed no difference in toxicity between leachates from the field-exposed and the newly purchased plastic. However, the other plastic products exposed to the marine environment were more toxic than their corresponding newly bought products. This indicates that the toxicity of the leachates not only depends on the polymer type, but also on the weathering condition of the plastic.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2018. s. 36
Nyckelord
Plastic, microplastic, degradation, leachates, weathering, photo-oxidation, marine environment, toxicity
Nationell ämneskategori
Miljövetenskap
Forskningsämne
tillämpad miljövetenskap
Identifikatorer
urn:nbn:se:su:diva-155581 (URN)978-91-7797-167-2 (ISBN)978-91-7797-168-9 (ISBN)
Disputation
2018-06-12, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

Tillgänglig från: 2018-05-18 Skapad: 2018-04-25 Senast uppdaterad: 2018-05-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Gewert, BeritPlassmann, Merle M.MacLeod, Matthew
Av organisationen
Institutionen för miljövetenskap och analytisk kemi
I samma tidskrift
Environmental Science: Processes & Impacts
KemiGeovetenskap och miljövetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 308 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf